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EDITORS'  P R E F A C E  

The present volume of Lecture Notes in Physics constitutes the Proceedings of the 
Thirteenth International Conference on Numerical Methods in Fluid Dynamics, held at 
the Consiglio Nazionale delle Ricerche, Rome, Italy on 6-10 July 1992, with the following 
format: a plenary session in the mornings and two parallel sessions in the afternoons. 
Each plenary session started with an invited lecture on the subject of the session, the 
five topics, chosen by the Conference International Committee, being: Multidimensional 
Upwinding; Turbulent Flows; Domain Decomposition Methods; Unstructured Grids; Flow 
Visualization. Finally, one session was devoted to a Workshop on Cell-Vertex Schemes, 
sponsored by the U.S. Department of Defense. 

Ninety-eight contributed papers were accepted, out of 266 abstracts submitted from 
all over the world, by four paper selection committees, chaired by M. Holt, K. Oshima, 
M. Pandolfi and V. Rusanov. Seven papers were withdrawn before or after the conference 
and two have not been presented at the conference by any of the authors. 

The remaining papers presented in this volume have been divided into seven parts: 
the first four broadly relate to the first four invited lectures, the fifth contains papers 
concerning supersonic and hypersonic flows, the sixth contains all other papers and the 
last contains the contributions to the workshop on cell-vertex schemes. 

The conference was attended by 191 people from 22 countries. Its success owes much 
to the efforts of the International Organizing Committee, to our associates A. Angelinl 
and V. Casalino of the Local Organizing Committee, to the staff of Progress Promozione 
Congressi and, last but not least, to the unique charm of Rome. 

Rome M. Napolitano 
September 1992 F. Sabetta 
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P R O G R E S S  I N  M U L T I - D I M E N S I O N A L  U P W I N D  D I F F E R E N C I N G  

B r a m  van Leer 

University of Michigan, Ann Arbor, MI 

1 I n t r o d u c t i o n  

CFD algorithms for the coming generation of massively parallel computers will have 
to be extremely robust. They will most likely be implemented on adaptive unstruc- 
tured grids, and will be used for ambitious simulations of steady and unsteady three- 
dimensional flows. In such a complex environment there is little place left for hand- 
tuning parameters that regulate accuracy, stability and convergence of the computa- 
tions. A typical algorithm will make very intensive use of local data, with a minimum 
of message passing. 

Algorithms of this nature exist already in CFD: they are the upwind-differencing 
schemes, computationally intensive but unsurpassed in their combination of accuracy 
and robustness. While these favorable properties are explainable for one-dimensional 
methods, it is a stroke of luck that upwind schemes work as well as they do for 
two- and three-dimensional flow. Their design is cmnmonly based on one-dimensional 
physics, namely, the solution of the one-dimensional Riemann problem that describes 
the interaction of two fluid cells by finite-amplitude waves moving normal to their 
interface. The inadequacy of this technique clearly shows up when the numerical 
solution contains shock or shear waves not aligned with the grid, for instance, by a 
loss of resolution. 

The need to incorporate genuinely nmlti-dimensional physics in upwind algorithms 
was recognized as early as 1983 by Phil Roe [1]. A study of discrete multi-dimensional 
wave models by Roe followed in 1985 (ICASE Report 85-18, also [2]), but it took until 
1991 [3] before any algorithms based on such wave models became truly successful. 
Important contributions to this development were made by Herman Deconinck and 
collaborators [3, 4] at the Von K£rm£n Institute in Brussels. The new upwind schemes 
are formulated on unstructured grids with data in the vertices of triangular or tetra- 
hedral cells. 

While genuinely multi-dimensional methods were slowly developing, partial suc- 
cesses were booked by putting some multi-dimensional information into the Riemann 
solvers used in conventional upwind schemes. In particular, it became the fashion 
to obtain a plausible wave-pr0pagation angle from the data, rather than accepting 
the angle dictated by the grid geometry. The earliest work of this kind is due to 
Steve Davis [5]; it recently was picked up by a number of authors: Levy, Powell and 
Van Leer [6], [7], Dadone and Grossman [8, 9], Obayashi and Gomjian [10], Tamura 
and Fujii [11]. Roughly speaking, they apply Riemann solvers in several, physically 
appealing, directions; I shall refer to their work as the multi-directional approach. 

Related, but closer to the genuinely multi-dimensional approach is the work of 
Rumsey, Van Leer and Roe [-12, 13, 14, 15] and Parpia and Michalek [16, 17]. These au- 
thors independently developed ahnost identical multi-dimensional wave models based 
on minimizing wave strengths. These wave models requires only two input states, just 
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Figure 1: Two views on scalar upwind differencing: (a) nodal-point interpretation; 
(b) finite-volume interpretation. 

as a regular Riemann solver. 
In support of these quasi-multi-dimensional approaches, aimed at putting better 

physics into interface fluxes, some authors have dedicated efforts to improving the 
interpolation or reconstruction step that precedes the flux calculation. On a struc- 
tured grid the reconstruction of a non-oscillatory distribution of flow variables from 
their cell-averages usually is done dimension by dimension; a fully multi-dimensional 
reconstrucion is indispensable in achieving higher accuracy. Barth and Frederickson 
[18] indicated how to reconstruct a smooth function up to arbitrarily high order on 
an unstructured triangulation; Abgrall [19] showed how to implement truly multi- 
dimensional limiting of higher derivatives. 

In this lecture I shall review a decade of efforts toward multi-dimensional upwind- 
differencing, with the accent on the very latest devdopments. The discussion is limited 
to the multi-dimensional physics that goes into these methods; multi-dimensional 
reconstruction will not be further mentioned. For a somewhat different emphasis 
or point of view the reader is referred to three excellent other reviews of multi- 
dimensional methods [20, 21, 4] that have been presented in the past year. 

2 T w o  v iews  of  o n e - d i m e n s i o n a l  u p w i n d i n g  

In order to appreciate the problems surrounding multi-dimensional upwinding it is 
useful to consider the principles of one-dimensional upwinding. The reader is assumed 
to be familiar with the theory of conservative upwind schemes; as a tutorial Roe's [22] 
review article is recommended. 

Upwind differencing is a way of differencing convection terms. For the scalar 
convection equation 

u~ + cux = 0, (1) 

the simplest upwind-difference scheme, of first-order accuracy, reads 

n + l  n n 
U4 - -  Ul -~- C ~ i  - -  U~L1 - -  O, C > O; ( 2 )  

At Ax - 
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Figure 2: Two approaches to upwind differencing for the Euler equations: (a) fluctu- 
ation approach; (b) finite-volume approach. 

u n + l  n n n 

- -  Ui "~ C ui+l - -  U i  = 0 ,  C < 0. (3) 
At Ax  

Scheme (2,3) can be regarded as a formula for updating, from t '~ to t n+l, either the 
nodal-point value of u in xl, or the cell average of u in cell i. These two view-points 
are illustrated in Figures la  and lb. The distinction is significant, because it leads 
to distinct methods for more complex equations. In the development of schemes for 
the one-dimensional Euler equations, the first view-point has led to the concept of 
fluctuation splitting, due to Roe [23, 22]; the second view-point is that of Godunov 
[24] and has led to the projection/evolution or reconstruction/evolution concept of 
finite-volume schemes, due to Van Leer [25, 26, 27]. Below I shall review the formulas 
pertinent to each approach. 

2 . 1  F l u c t u a t i o n  s p l i t t i n g  

Assume the system 
U, + F(U)~ = 0 (4) 

represents the Euler equations in conservation form, i.e., U = (p, pu, pE) T is the 
vector of conserved state quantities and F(U) = (pu, pu 2 + p, pull) T is the vector of 
their fluxes. The equation shows that any local imbalance of the fluxes causes the 
local solution to change in time. Such a local imbalance is called a fluctuation by Roe 
[28, 1]. If source terms are present, their value must be included in the fluctuation 
[22]. 

Define the matrix A(U) as the derivative of F(U) with respect to U, so that 

dF(U) = A(U)dU. (5) 

It is essential for the technique of fluctuation splitting that this differential relation 
be replaced by an exact finite-difference analogue, namely, 

A F  = AAU, (6) 

where A indicates a difference between neighboring nodal points. Roe [29] has in- 
dicated how to construct a mean value A of A such that Eq. (6) holds exactly for 
arbitrary pairs of state vectors. For a calorically perfect gas a suitable mean value 



can easily be obtained by introducing the the parameter vector w - x/fi (1, u, H) T. 
Since both g(w) and F(w) are quadratic in the components of w, it follows that Eq. 
(6) is satisfied by A - A (U(~)), where ~ is the algebraic average of w. 

Fluctuation splitting requires that the matrix A be split into its positive and 
negative parts, i.e., 

A = A + + A-,  (7) 

so that 
a F  = ~i+AU + A-AU. (8) 

A popular name for this procedure is "flux-difference splitting"; the term "fluctuation 
splitting" is preferable because it includes source-term splitting. The first term on the 
rightrhand side combines disturbances that propagate forward; in consequence, this 
term is used to update the right nodal point. The second term combines backward- 
moving disturbances and is used to update the left nodal point. This concept is 
illustrated in Figure 2a. Conservation is ensured because the two terms add up to a 
perfect flux difference. The first-order update formula becomes 

v~+l = v n - - ~  Al-mV)i_½ -~- (A-AU)I+½ . ( 9 )  

In practice it often pays to abandon the matrix notation and expand AU and A F  
in terms of the individual disturbances. This yields 

3 

AU = ~ akRk, (10) 
k : l  

3 

A F  = ~ AkakRk, (11) 
k--1 

where Ak is an eigenvalue of A, Rk is the corresponding eigenvector, and a t  is the 
wave strength; note that Eqs. (6) and (10) imply Eq. (11). By considering that each 
fluctuation may move forward or backward through the grid, we recover the splitting 
formula (8): 

AF = ~ ,  ),kakRk + ~_, ;~kakRk 
Ak<O A~>O 

3 3 

-= Z + E 
k = l  k = l  

= A+AU+A-AU.  

(12) 

2 . 2  F i n i t e - v o l u m e  a p p r o a c h  

In the finite-volume approach the focus is on the numerical flux function F (UL, Un), 
a recipe for computing the interface fluxes from the states UL and Un on the left 
and right sides of the interface. The generic formula for updating cell averages of the 
conserved quantities is 

zx ( 
n _ - F I) (13) u? +1 = 



In Godunov's first-order scheme the interface flux is taken from the solution at 
t > 0 of Riemann's initial-value problem with input data 

U(x,O) = UL, x > 0 ,  (14) 

U(x,O) = UR, x < 0 ;  (1,5) 

this is illustrated in Figure 2b. 
For many applications it is not necessary to use the exact solution to this problem, 

hence the activity in the research area of "approximate Riemann solvers" [23, 307 31]. 
Adopting Roe's [23] approximate solution, which is the exact solution of the locally 
linearized equation 

Ut + AU~ = 0, (16) 

we find three equivalent formulas for the interface flux: 

F (UL, U.) = EL + si-ZXU, (17) 
F (UL, UR) -- F ,  - A+AU, (18) 

1 (FL + FR) -- IAlzxu, (19) r(u~,u~)  = 

where 
I~11 = A + - A-. (20) 

In practice the formula (19) is preferred because of its symmetry; the expanded form 
is 

1 F 1 3 
F(UL, UR) = 3( L + FR) - ~ ~ I~kl~kRk" (21) 

Inserting the flux (19) into the finite-volmne scheme (13) yields an scheme that, 
with the help of the identity (6), reduces precisely to the fluctuation scheme (9). Yet, 
there exists an important difference between Eqs. (19,13) and Eq. (9): in the latter 
the ma t r ix / ]  must  satisfy the identity (6) in order to maintain conservation, while 
in Eq. (19) the matrix IAI may be derived from any average A without endangering 
conservation. The flux formula (19), due to Van Leer [32, 33], preceded the fluctuation 
approach of Roe [23], based on (6), by a decade. 

3 I n t e r m e z z o :  h o w  g o o d  is  o n e - d i m e n s i o n a l  u p -  

w i n d i n g ?  

To appreciate the superior accuracy and robustness of upwind differencing in one 
dimension, consider the numerical results shown in Figure 3 and 4, taken from [34] 
and [35], respectively. In Figure 3a the exact and discrete Mach-number distributions 
for choked flow through a converging-diverging channel are superimposed. First- 
order fluctuation splitting was used, including source-term splitting [22, 36] and a 
special splitting near the sonic point [34]. Although the update formula is only first- 
order accurate, it can be shown that the scheme yields second-order accurate steady 
solutions. In fact, in the steady state the scheme reduces to the two-point box scheme 
on all meshes except near a sonic point and inside a shock structure, where it becomes 
a three-point scheme. This yields the smooth transition through the sonic point and 



the crisp shock transition in the displayed results. Figure 3b shows the residual- 
convergence histories for three increasingly powerfull marching techniques: global 
time-stepping, local time-stepping and characteristic time-stepping [35]; these look 
uneventful. In Figure 4a a shockless transonic solution is reached from initial values 
containing 7 shocks and 8 sonic points; again, the residual-convergence history in 
Figure 4b for local time-stepping shows nothing unusual. 

It is this type of performance we wish to preserve when extending upwind differ- 
encing to higher dimensions. 
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Figure 3: Choked flow through a converging-diverging channel, computed with a 
fluctuation scheme. (a) Initial and final Math-number distributions; (b) residual- 
convergence histories for global, local and characteristic time-stepping. 
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Figure 5: Extending the finite-volume method to two dimensions by solving one- 
dimensional Riemann problems at all cell faces. The arrows symbolize the exchange 
of information between cells in the direction normal to their interface. 

4 M u l t i - d i m e n s i o n a l  e x t e n s i o n  of  the  f i n i t e - v o l u m e  
m e t h o d  

The standard way to extend upwind differencing to the multi-dimensional Euler equa- 
tions is still the same as indicated by Godunov et al. [37] in 1961. For first-order 
accuracy, initial values are assumed to be constant in each cell, just as in one di- 
mension; fluxes at cell interfaces again follow from solving one-dimensional Riemann 
problems of the type (14,15), with x now measuring distance along the normal to the 
interface. This is illustrated by Figure 5. 

It is the projection of the true initial values onto cellwise constant distributions 
(or linear [25, 26] or quadratic [25, 38, a91 or even higher-order distributions [401) that 
creates discontinuities at the interfaces. This leads us to introducing plane wave fronts 
parallel to the interface, and selecting, out of all possible directions, the interface 
normal as the direction for wave propagation. If the solution contains only shock 
and/or  shear waves aligned or nearly aligned with the grid, this choice happens to be 
the correct one, and high resolution of such waves can be achieved in the steady state, 
just as in one dimension. If, however, such waves are far from aligned with the grid, 
they get misrepresented by the upwind scheme as pairs of grid-aligned waves, as shown 
in Figure 6 for a shear wave. Thus, a grid-oblique stationary wave may be represented 
by several grid-aligned running waves, leading to higher numerical dissipation and a 
considerable loss of resolution. 

Another purely numerical artifact caused by grid-aligned upwinding is the pres- 
ence of pressure disturbances across a grid-oblique shear layer. First observed by 
Venkatakrishnan [41], the explanation was provided by Rumsey et al. [12]; this phe- 
nomenon is further discussed in Section 4.2. 

From the above critique one should not conclude that in higher dimensions the 
standard upwind methods are inferior to other methods; the loss of accuracy just is 
much more obvious for upwind methods. 
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Figure 6: Misinterpretation of a grid-oblique shear wave by grid-aligned upwinding. 
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Figure 7: Fluxes in a frame aligned with a wave front oblique to the grid lines. 

4 .1  M u l t i - d i r e c t i o n a l  m e t h o d s  

The smearing of oblique shock waves in numerical solutions has received considerable 
attention, and a proportionally large research effort has been spent in mending this 
weakness. The prevailing idea is to solve the Riemann problem in a direction more 
appropriate than the grid direction. One immediate consequence of leaving the grid- 
aligned frame is that solving one Riemann problem no longer suffices. Figure 7 shows 
that, in two dimensions, both flux vectors in the rotated frame are needed for the 
construction of the fluxes normal to the interface. 

Consider, for example, Figure 8, showing a rotated coordinate system aligned with 
level lines representing a shock front in a discrete solution. It makes sense to solve 
a one-dimensional Riemann problem in the direction normal to the front, i.e. using 
the flow-velocity components in that direction; this yields the flux in the normal 
direction. The input states for the Riemann solver are UL.t_ = UL and UR± =/YR. The 
flux tangential to the shock should be obtained from state values located at LII and 
RII; using UL and UR once more would completely destroy the effect of the rotation 
[7, 14]). These values could be approximated by 

1 (uL + uR); (22) uL, = uR, = 

this, however, implies central differencing along the shock and leads to odd-even 
decoupling in that direction [6, 7, 42]. 
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Figure 8: A simple multi-directional flux formula. 
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Figure 9: Input states for the Riemann problems in the flux computation according 
to Levy et al. 

In the work of Davis [5, 43], dating back as far as 1983, the computation of the 
tangent flux actually is more complicated than that of the normal flux. The more 
recent work of Levy et al. [6, 7, 42] and Dadone and Grossman [8, 9] is more 
mature in that the fluxes are treated without distinction. Figure 9 shows how pairs 
of input states to the two Riemann problems, (UL±, URx) and (ULII, URII), are selected 
according to Levy et al. In their first-order method the input states in the rotated 
frame are obtained by linear interpolation between neighboring states in a ring of cells 
surrounding the interface; Dadone and Grossman simply take the value in the nearest 
cell, which apparently adds to the robustness of the method. Another, wider ring of 
cells is needed for achieving second-order accuracy. 

Various choices can be made for the rotation angle of the frame in which the 
Riemann problems are solved. A sensitive quantity is the direction of the velocity- 
difference vector, VR - VL, which was adopted by Davis and also is crucial to the 
approach of Rumsey and Parpia (see Section 4.2). Levy et al. use the direction of 
the velocity-magnitude gradient VIlli, which can detect both shock and shear waves, 
while Dadone and Grossman use the pressure gradient Vp, which only detects shocks. 



For a more detailed description of the multi-directional approach the reader may 
be referred to reference [9] in these proceedings. 

After a decade of multi-directional methods, what benefits have been demon- 
strated? Surely, these methods yield impressive results when applied to first-order 
schemes: shock and shear waves not aligned with the grid are represented as if 
computed with a higher-order method. The improvement brought to higher-order 
schemes, though, is a lot less spectacular, and this is understandable. On the one 
hand, there is not much room left for a further reduction of wave spread (more for 
shear waves than for shock waves); on the other hand, loss of monotonicity may occur, 
against which there are no effective limiters, and convergence to a steady state suffers 
under the strong nonlinearity of the methods. 

In my opinion, the multi-directional approach has had a clear impact on computa- 
tional fluid dynamics. Although complete multi-directional methods will survive only 
if the problem of ensuring robustness can be solved, I expect that elements of such 
methods may find their way into standard, direction-split codes, to help resolve flow 
features arising in specific flow problems. 

4 .2  M i n i m u m - s t r e n g t h  w a v e  m o d e l s  

In the work of Rumsey, Roe and Van Leer [14] and Parpia and Michalek [17], the 
orientation of the cell interface is de-emphasized. The spatial discretization is no 
longer regarded as generating a discontinuity along the interfaces; instead, an at tempt  
is made to find out what waves are actually propagating near the interface. This, of 
course, requires data spanning a multi-dimensional part of space; if only the two 
states UL and /JR are to be used, a theoretical conjecture must make up for the 
missing information. 

In the basic wave model of Rumsey et al. a special set of 4 waves is used to 
match the state difference UR - UL; for uniqueness, the sum of the wave strengths 
is minimized. Three of these waves follow from solvin~g a one-dimensional Riemann 
problem in the direction of the velocity difference AV, the fourth wave is a shear 
wave normal to the other three. This choice of waves makes sense from a kinematic 
point of view, as illustrated by Figure 10. It shows that a velocity difference AI? can 
be explained by an acoustic wave traveling in the direction of AI ~ as well as a shear 
wave traveling in the normal direction. Which explanation is the more likely one 
may be determined by also considering the pressure difference pR - PL: a large value 
favors the acoustic explanation, while a small value favors the shear explanation. The 
minimization procedure takes the full state difference UR - UL and comes up with a 
plausible explanation in terms of all four waves. The method of Parpia and Michalek 
differs only in the choice of the functional that is minimized. Figure 11 shows the 
configuration of the plane waves crossing the interface. In practice both methods 
include a fifth wave, a weak shear wave, which corrects for the difference between the 
true direction of AI? and the direction actually used; the latter may have been held 
over from a previous iteration ("frozen"), for improvement of convergence. 

The word "plausible" used above indicates that the minimization procedure only 
makes an educated guess: it is possible to compose a set of initial values that is totally 
misinterpreted. Consider, for instance, the head-on collision of two gases that have 
equal, negligi'ble pressures. In reality two strong shocks are formed, moving into the 
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gases. The procedure sees as input a velocity difference not accompanied by a pressure 
difference, hence calls for a single shear wave, as if the gases avoided collision! 

The flux formula based on the above wave model is worth some discussion. As- 
suming the system 

us + F(U)x + a(U)  = 0, (23) 

with flux Jacobians A(U) and B(U), represents the two-dimensional Euler equations, 
we may again write AU as a sum: 

5 

A u  = (24) 
k = l  

The vector Rk is now an eigenvector of the matrix 

cos Ok + [~ sin Ok, (25) 

where Ok indicates the propagation angle of the k-th wave; the matrices A a n d / )  are 
standard Roe-averages. The upwind-biased interface flux is defined by 

F(UL, UR) = 1 s -~(FL + FR) -- ~2 ]Ak cos(0k -- 0normal) ] OLkRh, (26) 
k = l  

i.e. still by formula (21), but with the wave speeds Ak projected onto the interface 
normal. Although this formula seems trivial, it must be pointed out that there no 
longer exists a relation between A F  and AU like (6). 

In nmnerical practice mininmm-strength wave models appear to bring the same 
benefits and problems as multi-directional methods: great improvements in shock and 
shear resolution for first-order methods, much smaller improvements for second-order 
methods, and possible loss of monotonicity and convergence. 

To illustrate the performance of this class of methods, consider Figures 12a and 
12b. Both show pressure plots for steady viscous flow over a NACA 0012 airfoil at 
3 ° angle of attack and Reynolds number 5000, computed on a 129 x 49 O-grid by 
Rumsey [12, 14]. Under these conditions the flow separates from the upper surface, 
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Figure 11: Plane waves crossing a cell face according to the model of Rumsey et al. 

producing a detached shear layer oblique to the grid. For the results of Figure 12a a 
second-order MUSCL-type scheme [26, 44] was used, with Roe's [23] standard grid- 
aligned Riemann solver. The Riemann solver misinterprets the oblique shear as an 
grid-aligned shear plus an acoustic wave (see Figure 6); the latter causes a pressure 
rise or drop at the interface. Correspondingly~ the steady solution shows pressure 
fluctuations across the shear layer, so that its presence can actually be detected in 
pressure plots. A grid-refinement study shows that the disturbances scale with the 
mesh size. This phenomenon was first observed by Venkatakrishnan [41] and correctly 
explained by Roe; in fact, it motivated the work of Rumsey, Van Leer and Roe. As 
seen from Figure 12b, the minimum-strength wave model properly recognizes the 
oblique shear layer and generates clean pressure contours. 

The same method gives an unexpected improvement in the representation of in- 
viscid stagnating flow. The explanation is found in Figure 13, showing the turning 
of the flow near a stagnation point S as represented by the discrete velocities in the 
three cells marked 1, 2 and 3.. A grid-aligned Riemann solver interprets the velocity 
difference between vertical neighbors 1 and 2 as a compression (Vyl > Vy2), and the 
velocity difference between horizontal neighbors 2 and 3 as an expansion (V~2 < Vxs); 
this leads to pressure variations of the order of AV. The wave model detects only 
very small pressure changes (Ap .-~ pA(V2)) and therefore explains both velocity dif- 
ferences by shear waves. Although this still is not the right explanation, the result is 
a decrease in numerical entropy production. The effect is rather large for first-order 
methods, as can be judged from Figure 14 showing entropy contours for inviscid flow 
over a NACA 0012 airfoil at M = 0.3, a = 1 °, on a sequence of O-grids. The reduced 
entropy levels lead directly to reduced numerical drag levels, as Figure 15a shows. For 
second-order schemes the effect, as usual, is less dramatic; the drag values are given 
in Figure 15b. 
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(b) / J 

Figure 12: Viscous separating flow over a NACA 0012 airfoil at M = 0.5, a = 3 ° and 
Re = 5000. Pressure contours on a 129 x 49 (~-grid, obtained with a second-order 
upwind scheme incorporating (a) Roe's grid-aligned Riemann solver; (b) the five-wave 
model of Rumsey et al. 

5 Multi-dimensional fluctuation approach 
The fluctuation approach to upwind differencing lends itself bet ter  to extension into 
higher dimensions than the finite-volume approach. Recall that  a fluctuation is a 
local flux imbalance causing a non-zero t ime derivative of the local solution. For the 
one-dimensional Euler equations (4) the quantity - A F  equals the residual evaluated 
on a one-dimensional mesh: 

lmesh Utdx = --/mesh F~dz = - A F .  (27) 

This suggests extension of the fluctuation approach beyond one dimension by regard- 
ing each multi-dimensional mesh residual as the sum of a finite number  of waves (say, 
m),  moving in all possible directions. Thus we discretize the two-dimensional Euler 
equations as 

k = l  
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Figure 13: Turning of the flow in three cells near a stagnation point S at a wall. 

65 x 19 

129 x 37 ~ --""  ~ 

257 x 73 

(a) (b) 
Figure 14: Entropy contours for inviscid flow over a NACA 0012 airfoil at M = 0.3, 
a = 1% generated on a sequence of O-grids with a first-order scheme incorporating 
(a) Roe's grid-aligned Riemann solver; (b) the five-wave model of Rumsey et al. 

where the matrices A and /) are multi-dimensional averages that remain to be de- 
fined. Since the fluctuation approach is a nodal-point approach, and we wish to 
develop only schemes of maximum compactness, we shall use a grid of triangular 
meshes, with data given in the nodal points. For the computation of the residual 
on such meshes it suffices to apply the trapezoidal integration rule on each side of 
the triangle. The fluctuations resulting from residual decomposition must be sent to 
the triangle's vertices according to some distribution scheme that approximates the 
convection equation. 

It follows that,  for the construction of a genuinely multi-dimensional upwind- 
differencing scheme, three components are needed: 

1. A reliable multi-dimensional wave model for representing the residual; 

2. A way to ensure conservation, i.e. a multi-dimensionM extension of Roe's matrix 
average; 
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Figure 15: Grid-convergence study of the drag coefficient based on (a) the first-order 
solutions of Figure 14; (b) the corresponding second-order solutions. 

3. A multi-dimensional convection scheme for advancing the waves. 

Each of these will be discussed in a separate subsection. 

5.1 M u l t i - d i m e n s i o n a l  w a v e  m o d e l s  

The modeling of a local Euler residual by a finite nmnber of waves was launched as 
a research subject by Roe [2]; his first paper, however, gave no specific instructions 
as to how the model would be used in a numerical integration of the Euler equations. 
This is not surprising, given that the other problems - multi-dimensional conservation 
and advection - had not yet been addressed. 

The latest version of Roe's wave model calls for four acoustic waves, running along 
the principal strain axes of the local fluid element, a shear wave making a 45 ° angle 
with the acoustic waves, and an entropy wave running in the direction of the entropy 
gradient; see Figure 16. Thus, m = 6 in Eq. (28). These six waves are defined 
by two independent angles and six strengths; therefore, eight independent pieces of 
information need to be supplied per triangular mesh. This information is available 
in the form of the gradient of the state vector; its mesh value is computed with the 
trapezoidal rule from the following boundary integrals: 

1S L u~dxdy - 1  L Udy;  (29) 
Ux -= A r e a  esh A r e a  lesh 

A 1 /fro U.dxdy- 1 im Udx. (30) 
Uy --  A r e a  e.h A r e a  . .h 

A detailed discussion of this wave model, including the three-dimensional case, can 
be found in Roe's contribution to the present volume [45]; numerical results obtained 
with this model are presented in the contribution by Catalano et al. [46]. 

This section would not be complete without a discussion of the work of Hirsch and 
collaborators [47, 48, 49]. Their multi-dimensional approach is based on diagonalizing 
the Euler equations, i.e. changing these into a system of convection equations, by a 
transformation of state variables. The transformation itself depends on the local 
gradient of the solution, making the diagonalization essentially nonlinear. For certain 
data the transformation does not exist, in which case it is chosen so as to minimize 
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Figure 16: Roe's two-dimensionM six-wave model. The acoustic waves run parallel 
to the principal strain axes (dashed); the strain ellips (dotted) shows the kinematic 
deformation of a circular fluid element. 

the off-diagonal terms. The update scheme, though, can be made identical to a 
fluctuation-based scheme: decomposition of the residual along certain eigenvectors, 
followed by convection of the components [50]. In two dimensions the diagonalization 
is equivalent to using one particular four-wave model; clearly, the fluctuation approach 
offers nmch more flexibility. 

5 . 2  M u l t i - d i m e n s i o n a l  c o n s e r v a t i o n  

The multi-dimensional extension of Roe's averaging of the flux Jacobian was indepen- 
dently discovered by Roe and Struijs, and is presented in a joint paper [51]. This very 
recent (1991) addition to the multi-dimensional toolbox applies exclusively to trian- 
gular meshes in two dimensions and tetrahedral meshes in three dimensions. The 
following description and explanation of the two-dimensional averaging apply to the 
special case of a calorically perfect gas. 

To begin with, assume that the parameter vector w = x/~(1, u, v, H) is distibuted 
linearly over a mesh triangle with vertices labeled 1, 2 and 3. Denote the average of 
w over the triangle by ~; we then have 

1 
,~ = 5(w~:+ w~ + w~). (3~) 

As before, U(w) and F(w), and also G(U), are quadratic in the components of w, so 
that the Jacobian matrices U~, F~ and Gw are linear in w, and therefore also in x 
and y. Considering that Ux = U~,w,;, U u = U~wv, etc., where w~ and wv are constant 
over the entire triangle, we conclude that ~U,  XYF and XYG also___vary linearly over the 

triangle. Using the definition of the mesh-averaged gradient VU given in Eqs. (29), 

(30), and similar definitions of ~TF and VG, we easily derive the relations, 

V F  =_ A(U(co))VU, (32) 

v a  - B(u(~))vu, (a3) 
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Figure 17: Stencils of two-dimensional upwind convection schemes; case a > b > 0. 
(a) Sidilkover's second-order scheme. The fluxes for cell 1 nominally are compurted 
by linear interpolation between upstream pairs of data, but the fluxes at the North 
and South faces must be limited to prevent numerical oscillations. The limiters are 
based on the ratios a ( u ~  - u 2 ) / [ b ( u s  - u2)] and a ( u 3  - u 4 ) / [ b ( u 2  - u4)], respectively. 
(b) Standard second- or third-order grid-aligned scheme. 

which are direct extensions of the one-dimensional relation (6). The extension to 
three-dimensional averaging is self-evident. 

5.3 M u l t i - d i m e n s i o n a l  convect ion  

The pursuit of multi-dimensional convection schemes has kept a number of authors 
busy over the past three years. In two dimensions the basic equation to be solved is 

ut  -t- a u x  + buy = 0, (34) 

where a and b are constant velocity components, or, in vector notation, 

u, + = 0 (35) 

The first significant work was that of Sidilkover [52], who, among other things, 
showed how a second-order upwind scheme, with residual computed on a square mesh, 
can be made non-oscillatory by standard limiters without undue spreading of the 
stencil. The domain of dependence for this algorithm is shown in Figure 17a, for the 
case a > b > 0; note how compact this is in comparison to the stencil of a standard 
second-order upwind scheme, shown in Figure 17b [27]. He also coined the name 
"N-scheme" for the flrst-order scheme that,  on a cartesian grid, takes its data from 
the upwind triangle fitting the convection path most tightly (N stands for narrow). 
For example, for point 1 in Figure 17a it would be triangle (124). This scheme, as 
shown in [53], is optimal in the sense that, among all schemes with upwind triangular 
domain of dependence, it combines the smallest truncation error with the largest 
stable time-step. The three-dimensional extension is also described in [53]. 

While the triangles in Sidilkover's work were still considered subdivisions of squares, 
they become autonomous in later work by other authors. A major step in the devel- 
opment of two-dimensional convection schemes was the realization that there are two 
types of triangles [54]: those with one inflow side and those with two inflow sides. 
This is illustrated in Figure 18. If there is only one inflow side, the fluctuation ap- 
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Figure 18: Two kinds of triangles: (a) with one inflow side; (b) with two inflow sides. 

proach dictates that the entire residual be used to update the opposite node. This is 
the unique "single-target" form of the scheme, similar to the one-dimensional upwind 
scheme 2. If, however, there are two inflow sides, it may be argued that the residual 
be distributed over the two nodal points defining the third side. This is the "dual- 
target" form of the particular scheme; each choice of distribution weights defines a 
new scheme. The spreading of the residual information over two points implies a 
potential loss of resolution, inherent to multi-dimensional numerical convection; there 
is no one-dimensional analogue of this effect. 

In the development of multi-dimensional convection schemes, three design criteria 
play a decisive role. According to these, it is desirable for a scheme to be 

1. l inear :  for a given grid geometry and.flow angle the solution depends linearly on 
the data. This promotes convergence to a steady numerical solution. It is well 
known that the presence of nonlinear devices in the scheme, such as limiters [44] 
and frame rotation (see Section 4.2) can slow down or even halt the convergence 
process; 

2. l i nea r i t y  p r e s e r v i n g  (LP) :  data of the form 

u(x ,  y) = bx - ay,  

which is a steady solution of Eq. 34 are not changed by the scheme. 

. 

(36) 

This 
promotes the accuracy of the scheme. It can be shown [54] that LP schemes 
yield seeond-order~aecurate steady solutions of Eq. 34; 

pos i t ive :  the scheme has positive coefficients. This is sufficient for preventing 
numerical oscillations. 

From one-dimensional finite-difference theory we know - and have known so for 
a long time - that the above conditions are mutually exclusive. There is a famous 
theorem by Godunov [24] which says that no linear convection-diffusion scheme with 
positive coefficients can be more than first-order accurate. With reference to our de- 
sign criteria for nmlti-dimensional convection schemes this theorem reads: 

There are no l inear posi t ive L P  schemes .  

Again, nonlinearity is essential for the design of accurate, non-oscillatory schemes. 
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Figure 19: Dual-target form of convection schemes: (a) N-scheme; (b) LDA-scheme. 

Among the various upwind convection schemes proposed in recent years, three 
schemes stand out; these are discussed below. They all are as compact as can be, 
requiring data on only one triangle for the approximation of the convection equation. 
A small miracle is that even positivity can be achieved without leaving the triangle. 
Of course, each nodal point is a vertex of a number of triangles and may receive 
fluctuations from several of these; programming therefore must be triangle-based. 
Some results of numerical experiments are presented in Section 6. 

T h e  N-scheme:  the  op t ima l  l inear pos i t ive  s c h e m e  

The name of this scheme suggests equivalence to Sidilkover's N-scheme, but it actu- 
ally is more general. Sidilkover's scheme is just the single-target form, common to 
all compact schemes; fluctuations from triangles requiring a dual-target scheme are 
ignored in the update. The dual-target form of the current N-scheme uses distribution 
weights proportional to the components of the convection speed along the two inflow 
sides, as depicted in Figure 19a. This makes the scheme optimal in the sense of having 
the largest stability range for the time-step [54]. It is also linear and positive, and 
therefore can be no more than first-order accurate. 

T h e  N N - s c h e m e :  t h e  opt imal  nonl inear  pos i t ive  LP s c h e m e  

This scheme is a nonlinear variant of the N-scheme. hence the second N. The nonlinear 
procedure included in this scheme has absolutely nothing in common with the TVD- 
enforcing limiters included in one-dimensional convection schemes. It is based on 
the observation that in the convection equation (35) the component of the convection 
velocity ~ perpendicular to the solution gradient Vu, has no effect on ut. We therefore 
are allowed to replace ~ by any velocity that has the same component parallel to Vu, 
as shown in Figure 20. This component, indicated by ~ ,  is the velocity at which 
the level lines of u normal normal to themselves, i.e. the wave speed of the local 
distribution of u. This wave speed is the smallest of all admissible convection speeds; 
it actually vanishes with the residual. We may now adopt the following strategy: if 
both ~ and ~ call for a dual-target scheme, we relJlace g by ~,, in the N-scheme; in 
all other cases the scheme becomes or remains a single-target scheme. In the case of 
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Figure 20: The NN-scheme: nonlinear single-target form. The convection speed 
calls for a dual-target scheme but is replaced by gl, which calls for a single-target 
scheme. The wave speed ~ is the component of ~ and gl parallel to Vu. 

Figure 20, g is replaced by al, the nearest admissible speed yielding a single-target 
scheme. The resulting scheme does not change any nodal value if the residual vanishes, 
hence is LP, and maximizes the allowable time step. 

Numerical results indicate that the accuracy of the NN-scheme lies between first- 
and second-order; see further Section 6. 

T h e  L D A  s c h e m e :  a n o n - p o s i t i v e  l i n e a r  L P  s c h e m e  

This scheme is one of several low-diffusion schemes, designed for a low truncation 
error. In the dual-target form of the scheme the distribution weights are inversely 
proportional to the areas of the triangles cut from the mesh triangle by a streamline 
through the inflow vertex; see Figure 19b. This scheme is not positive, but very accu- 
rate: on a uniform grid it achieves third order accuracy, as demonstrated in Section 
6. 

The above schemes have served as the basis for convection-diffusion schemes in a 
study by Tomaich and Roe [55]. Since the diffusion operator can not be approximated 
on a single triangle, their schemes are formulated with reference to a central nodal 
point. Numerical solutions of the Smith-Hutton [56] test problem demonstrate that 
these schemes rival the best exsisting convection-diffusion schemes in accuracy. In 
addition, their way of discretizing the Laplacean is directly applicable to any of the 
disipative terms included in the Navier-Stokes equations; thus, the basis for genuinely 
multi-dimensional Navier-Stokes codes has been laid. 

6 N u m e r i c a l  resu l t s  

To support some of the statements made about the new, compact convection schemes 
I first show how these schemes fared in a comparative grid-refinement study by Jens 
Mfiller [57]. The proble m is that of convection of a Gaussian distribution over a semi- 
circle; Inflow is at y = 0, x < 0, outflow at  y = 0, x > 0. Four kinds of grids were 
used, of which three examples are displayed in Figure 21. Grids (~ and/3 derive from 
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Figure 21: Three grids used in the circular-convection experiments. 
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Figure 22: Grid-convergence of L2-error for convection of a Gaussian over a semicircle 
by various schemes on various grids. 

a uniform cartesian grid by adding diagonals, in grid a those diagonals are chosen 
that are least aligned with the convection direction, in/3  those most aligned. Grid 
7 is a irregular perturbation to /~, while 6 (not shown) is a minor perturbation to 
7. Figure 22 shows the convergence of the L~-error produced by the N-, NN- and 
LDA-schemes on the different grids. From the slope of the graphs of log(error) versus 
log(mesh-width) the following conclusions can be drawn: 

1. The N-scheme is somewhat less than first-order accurate; 

2. The NN-scheme is closer to being second-order accurate than first-order accu- 
rate; 

3. The LDA-scheme is third-order accurate on a regular grid, second-order or less 
on a perturbed grid; 
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Figure 23: Contours (left) and cut along the z-axis (right) of the solution obtained 
with the LDA-scheme on a 20 x 20 3-grid. 

Figure 24: Inviscid flow at Mach 1.4 through an inlet, computed by a genuinely 
multi-dimensional upwind Euler code. Shown are Mach-number contours and the 
unstructured grid used. 

4. All schemes decrease their error when diagonals are aligned with the flow. 

Most surprising is the achievement of third-order accuracy on regular grids, consider- 
ing the limited amount of information going into these compact schemes. Figure 23 
gives an idea of this high accuracy by showing solution contours and a cut at y = 0 
obtained with the LDA-scheme on the very coarse 3-grid of Figure 21 (Gaussian rep- 
resented on 10 meshes). Similar results obtained with three-dimensional extensions 
of the schemes can be found in Deconinck's comprehensive review paper [4]. 

While the search for compact convection schemes continues, several authors are 
trying to put together the ingredients listed in Section ,5, producing a genuinely multi- 
dimensional upwind guler code. Advanced numerical results can be found in the 
present volume in the contribution by Catalano et al. An earlier successful calcula- 
tion of supersonic inlet flow by Struijs et al. [3] produced the Mach-contours shown 
in Figure 24; superimposed is the moderately irregular triangulation. The results 
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Figure 25: The finite-volume scheme of Barth, Powell and Parpia, based on a trian- 
gular grid and its median dual. The flux F1 across one median element located in 
triangle T is computed using wave data from triangle T and fluxes from the vertices 
L1 and R. For the flux F2 across the other element in the same triangle the same 
wave data are used, but the fluxes are taken from L2 and R. 

demonstrate the excellent shock-capturing ability of the NN-scheme. 

7 F i n i t e - v o l u m e  s c h e m e s  rev i s i t e d  

From Section 5 the reader might get the impression that genuinely multi-dimensional 
schemes can only be formulated on triangular and tetrahedral meshes, and that they 
are incompatible with the finite-volume formulation. If this were true, it would mean 
a serious restriction on the use of such schemes within the CFD community, for it 
is not at all clear that unstructured triangular or tetrahedral grids are the way of 
the future. An alternative, for instance, is offered by adaptive cartesian grids [58]. 
The emphasis on triangles in Section 5 arises from the experience that the numerical 
building blocks, e.g. Roe's matrix averaging, take their simplest form on such meshes. 
Therefore, in developing a multi-dimensional scheme of a different format it would be 
good practice to start with the wave decomposition of residuals on an underlying 
triangular grid. 

As an example of such practice, consider the two-dimensional finite-volume Euler 
scheme of Powell, Barth and Parpia [59], illustrated in Figure 25. The wave model 
indeed is applied to data on triangular meshes; for the update, though, a finite-volume 
scheme is chosen. Cell faces are formed from the medians of the triangles, yielding 
the so-called median-dual grid. Across each median element of the cell contour a flux 
is computed using an equation of the form (26), where L and R denote the vertices 
of the triangle side bisected by the median, and the sum includes all waves identified 
in the triangle. Note the difference with the scheme of Rumsey et al., where the wave 
model would be based solely on Un - UL. The resulting nonlinear scheme, applied 
to a scalar convection equation, is LP and positive and appears to be more accurate 
than the NN-scheme. 
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8 Conclus ions  

The state of the art in genuinely multi-dimensional upwind differencing has made 
dramatic advances over the past three years, owing to a shift from the finite-volume 
approach to the flctuation approach. The basic ingredients for multi-dimensional 
Euler codes, i.e. wave model, conservation principle and convection scheme, are ready 
for integration, and the first numerical results look good. The coming years will yield 
many more Euler applications in two and three dimensions, further improvements in 
wave models and compact convection schemes, and extension of the approach to the 
modeling of the Navier-Stokes equations. 
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I.- I N T R O D U C T I O N .  

A century has already passed since REYNOLDS [1] et BOUSSINESQ [2], after their long and patient.  
observations on flows in Irwell and Ari~ge rivers, built the foundations of modern prediction methods for 
turbulence in fluids. Since then, despite important scientific, financial and human efforts devoted to a better 
understanding of the physics of turbulence, in order to obtain the suitable modelling of such phenomena, 
we have to admit that the turbulence of the Irwell and Ari6ge rivers have not yet revealed all their secrets 
and that numerical simulation has not yet become a daily optimization tool for engineers. This fact is worth 
analyzing and the state of the art is the main objective of this contribution. 

One of the old dreams of engineers, is to be able to predict physical phenomena without the systematic 
use of experiments. To satisfy this wish, research scientists endlessly try to put the physical phenomena in 
"equations", to analytically or numerically solve these equations and to compare the results obtained with 
experimental data used as a validation reference. When the validation comparison seems to be correct, these 
equations then receive the label of "mathematical modelg'. The study of turbulence is not a n exception to 
this general approach. 

Indeed, for the last thirty years, and in a more general context than the turbulence problem, the work 
tools of engineers have undergone enormous developments. Instead of the catalogues containing ready-made 
formulae and ready-drawn diagrams, engineers need more and more detailed knowledge, before efficiently 
optimizing their "product". Then, the engineer has to turn towards the basic mechanisms of Physics, by 
studying the models governing these physical processes, and also by numerically solvinlg the latter. 

The first "oil shock" in 1973 deeply modified engineering methodologies: an engineer could no longer 
be content with global methods and "coeflicient theoried'. On the contrary, he had more and more to 
confront the elaborate optimization problems of complex "systems", this operation being widely helped by 
increasingly efficient computers, with decreasing computing cc6ts. 

Fluid mechanics is a branch of physics which has always been a favourite field to apply the progress 
obtained on the numerical resolution of partial differential equations, and then the use of super-computers. 
This state is due to a fact: Fluids Mechanics is rich with non-linearities. 

These omnipresent non-linearities are not without important consequences on the problems studied, 
both on the physical aspects as on the numerical ones. Even in the usual fluids such as air and water, where 
the fluid behaviour law is linear (newtonian behaviour law), in addition to the convective non-linearity, we 
have to add three others: i): the first can come from the dens i ty  var ia t ions  reinforcing the coupling of 
the transport equations by the convection process (for any origin of these density variations), ii) the second 
one can issue from important source  t e r m s  such as the buoyancy effects, and iii) last, but not least, they 
can derive from the b e h a v i o u r  law itself. In this way, the non-linear rheological laws, so important in 
industrial applications, can play a major role in the flow stability. Owing to this fact, very few flows can 
remain for a long time in a laminar regime, after their commencement: they then become turbulent with all 
the consequences on the flow structures and on the transfer processes. 
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In any event, turbulent flows are much more complex than their laminar homologues, because of the 
multi-characteristic scale problem. For this reason, turbulent flows are not suitable to analytical solutions, 
and often a numerical approach becomes necessary. 

But this fact is not the only reason for the use of a numerical approach in Fluid Mechanics. 

The seventies were marked by the extraordinary development of numerical prediction methods for tur- 
bulent flows. The ampleness of this progress can be appreciated when we compare the results obtained 
between the first Stanford Conference on Turbulent Boundary Layers in 1969 [3] and the Stanford Confer- 
ence on Complex Turbulent Flows in 1980-81 [4]. ~ o m  simple thin shear layers we come rapidly to different 
complex turbulent flows, including recirculating separated flows, or shock-wave/boundary layer interactions 
[5], with very strong density variations, in complex geometry configurations, in heterogeneous medium, and 
even in reactive flows...Whatever the flow configuration to be studied, the work done in the 70's is usually 
within a very classical framework: incompress ib le  fluids and s t e ady  m e a n  flows. In fact, the statisti- 
cal turbulence models performed in the 7O's, give rise to satisfactory results for the numerical prediction 
of thin shear flows (jets, wakes, mixing layers...) and generally, in the fully developed turbulence zones of 
the far downstream fields, where self-similarity properties are observed for mean and turbulence quantities. 
However, the theoretical prediction seems to be less satisfactory in the zones of t r a n s i t i o n  and in the be -  
g inn ing  o f  t h e  t u r b u l e n c e  deve lopment .  In the same way, if some numerical simulations of separated 
flows, including large recireulating zones, seem to be globally correct [6] (Fig.l),  the theoretical prediction 
of wall momentum, heat and mass transfers, still remain to be perfected. 
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Fig.l.- Turbulent flow in a sudden enlargement e ra  pipe flow: Comparison experiment-numerical prediction 
[6], 1977. 

The 80's are more marked by the modelling efforts of some complex effects of turbulence. By "complex", 
we mean the effects of vo lume  forces,  of s t rong  curva ture ,  the effects of n a t u r a l  or fo rced  uns t ead ines s ,  
tile effects of compress ib i l i ty  or the var iable  dens i ty  by mass heterogeneity, etc... 

Due to the requirements imposed by the large diversity of industrial flow problems, one of the challenges 
in the last few years in the modelling of turbulence, was to correctly take into account the complex effects 
previously cited. 

To underline these efforts compared with the previous state, it is worth to come back to the main 
characteristics of turbulence modelling in incompressible flows. 
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2.- T H E  C O N T E X T  O F  S T A T I S T I C A L  M O D E L L I N G .  

Efforts devoted to the development of statistical turbulence models are usually within a context limited 
by two considerations: the first concerns the physics of the phenomenon, and the other is rather related to 
the pragmatic character of the search for tools destined for the prediction of complex industrial flows. 

Almost all turbulent flows simultaneously contain both o r g a n i z e d  and d i s o r g a n i z e d  characters. Their 
relative proportions depend mainly on the geometric patterns of the flow domain, on the flow Reynolds 
number,  on initial conditions and on boundary conditions. 

Thus,  it seems that  the mixing layers contain more organized structures than any other flows submitted 
to the same initial conditions. But this fact is rather superficial: the use of adequate measurement  and data  
processing techniques or high performance visualization methods, shows that  an axisymmetric jet  even at 
a high Reynolds number, contains similar ordered structures which are almost imperceptible to the naked 
eye. In the same way, a mixing layer at a relatively low Reynolds number, and apparently unturbulent,  may 
contain some disordered structures at small scales which visualization techniques reveal with difficulty. 

However, it is too simplistic to state that the organized and disorganized parts of the flow often play 
different roles in the transport  processes. A distinction between these two types of structures seems to be 
recommended, although this fact is not a sine qua non condition: the rather good results of the prediction 
of variable density mixing layers, obtained by SHIH et LUMLEY [7], constitutes a remarkable counter- 
example. Indeed, by using second order closures ignoring the presence of organized structures,  these authors 
successfully modelled one of ROSHKO's variable density mixing layers where unsteady organized structures 
uncontestably exist, placed in a prominent position by the famous pictures of BROWN et ROSKHO [8] since 
1974. i 

Nowadays, no-one seriously supposes that  a "universally valid' model can be developed with a one- 
point closure context, which is able to describle all complex turbulent flows for industrial applications. 
Disappointments met by the numerical prediction of the spreading rate of the axisymmetrlc round jet is 
one of the classical examples illustrating the weakness of statistical one-point closure modelling. But this 
restrictive remark does not mean that  statistical turbulence models have to be "thrown away". On the 
contrary, one must  be perplexed in the face of the quality of the results obtained with the previous models in 
a large variety of flows as different as the plane jet and the wall boundary layer, in spite of the rather rough 
validity of some hypotheses on which the modelling closures are built. Figure 2 shows a remarkable example 
[9-10] of the behaviour of turbulence models in a three-dimensional configuration: a curved channel. The  
good quality of the prediction attests a well built base of statistical modelling, in spite of some weakneses 
which we will try to identify in this paper. Let us give back some "charisma" to these models: ~lthough 
qualified as phenomenological (perhaps by reason of their belonging to the same family of the mixihg-length 
theory), the construction of these models is often based on mathematical considerations, more rigou~ous than 
they appear. The  relative success of some one-point closure turbulence models on the one hand stim~alates us 

t 
to advance in this field, and on the other hand forces us to objectively examine here the strength and weakness 
of the models in order to improve their ability for the prediction of complex turbulent flows presenting some 
industrial interest. Let us however remain lucid in recognizing that  it would probably be impossible to 
calculate the flows where the amplification or the suppression of some particular frequencies constitutes a 
basic mechanism for the physical phenomenon we try to model. 

3.- T H E  G E N E R A L  L A N D S C A P E  OF  O N E - P O I N T  C L O S U l l E  T U r t B U L E N C E  M O D -  
E L L I N G .  

For about twenty years, important efforts have been spent to develop various statistical turbulence 
models, using o n e - p o l n t  c losu res  (because different correlations and mean quantities are linked between 
them by relationships expressed at the same point in space and at the same time); sometimes these closure 
schemes even come from volume or surface integrals then taking into account in fact some space correlations, 
i.e.closnres in two-points, and even space-time correlations. 

In spite of the variety of the one-point closure models presented in the literature, we can distinguish 
two general groups: tlmse built on the eddy viscosity concept and those determining the second moment 
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(i.e. tile turbulent momentum, heat and mass fluxes) from partial derivative equations (transport equations) 
governing their balance and their evolution in time and in space. We respectively designate these two groups, 
the E.V.M. (Eddy-Viscosity Models) and the R.S.T.M. (Reynolds Stress Transport Models). 

O. 

O. 

o~, o.,a~oS ~----------------~'l 

f,.tn*. $ .~ 

0. -i 

0JRIo ~'J3 

4° .  ! • ( I .  

Fig.2.- Comparison experiment-prediction in a 3-D turbulent flow [9-10]. 

Between the two afore-mentioned classes, it is suitable to add a thir(i one, known as A.S.M. (Algebraic 
Stress Model) where the anisotropy character of the Reynolds stress would be taken into account without the 
use of transport equations to determine these turbulent stresses. Thus if by the transport equation number, 
the A.S.M. is related to the first group, the E.V.M., its ability to describe the anisotropy evolution of the 
turbulent stresses allows it to pretend to the same ambitions as the R.S.T.M. family. 

Since the previous classes of models are different by their calculation of the Reynolds stresses, let us 
start  by examining the consequences of these different choices: 

Every time there is a non-linearity character in a mathematical model, a statistical process applied to 
this model leads to the appearance of new unknown correlations. 

For example, for the momentum conservative equation, in incompressible flows, the particle derivative 
becomes after an ensemble avaraging: 

O i ] , ,  O(O,O~) . O(~-T~.) 
al t T t  axk .. . . .  (I) 

The different classes oi" turbulence models are distinguished by the way tile new unknown correlations issuing 

30 



from convective non-linearity are expressed. 
The first class of models is based on a formal analogy with the linear newtonian behaviour law: 

2 - fOOl aOk 2_ aChl 

In this behaviour law, the eddy-v i scos i ty  which is no longer an intrinsic property of the fluid, but 
becomes a character of the flow itself, and must be calculated by the mean of a length sca/e and a velocity 
scale: both of them must be characteristic of the turbulent structures governing the turbulent transfer 
process, inside the flows. The way these two turbulence scales are calculated, is used to distinguish the 
different levels of modelling of the eddy-viscosity concept family. However, we can point out that through 
the numerical approximations solving the equations (1) and (2), some numerical linearization (then artificial) 
is introduced, eventually decreasing some non-linearity properties of the physical phenomena. 

An alternative to this behaviour law of gradient type consists in considering the transport equations 
and the balance relatives to each second order moment representing the turbulent fluxes, whence the name 
of second order closure modelling. 

For the turbulent fluxes of momentum, exact transport equations can be derived as: 

DilJuslort by ]luctuating velocity Dil~usion by flu~ctuating preJsure 

[ r t +~-~ 

Viacous ea~|ernal powor  by ~luctuating motion 

r 00, 00jl /0u, ous~ (~) 

Direct production Itedistribution 

Viscous  in te rna l  power  by ]luctua~ing motion 

Using a more compact form, we can write: 

c7(u-~) Jr l]k = Dij + Pij + ¢q - DESi3 (4) 
at 

where Dii, Pq, ~bij and DESiy respectively designate the tensors of diffusion (or transport), of production, 
of redistribution and of destruction for the second moment u-T'~. When additional complex effects on 
turbulence, such as those of rotation, of the strong curvatures, or of the buoyancy forces.., are present, they 
must be included iu the terms q~i./ et DESq. 

As we will certainly see during this Conference, today, the model (k,~) of JONES and LAUNDER 
[11] is probably the most frequently used, not only in subjects of a theoretical nature, but also in practical 
engineering problems. Even if, in most cases, this model has often yielded to satisfactory results, we must 
not forget the following points: 
* From the fundamental point of view, to adopt the eddy-viscosity concept (2) amounts to giving turbulent 
stresses, which have a convective origin, a diffusive character with a gradient type, leading to a rather linear 
nature. Consequently, we have to expect that the turbulent effects stabilize the unsteadiness mechanisms 
issuing from the non-linearity of the Reynolds equations (1). 
• The use of the eddy-viscosity represented by the ratio (kZ/Q leads to a nearly constant value for the 
turbulent diffusivity in a large part of the flow fields. Indeed, the source terms (production and destruction) 
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of the turbulence kinetic energy on tile one hand, and those of the turbulence dissipation rate on the other 
hand, are nearly proportional. From this fact, a numerical simulation with a constant viscosity (equivalent 
to a false laminar regime) often leads to similar results (except in viscous sub-layers), but  with much lower 
computing costs. In other respects, this eddy-viscosity in (k2/e) form, is also the origin of the difficulty to 
correctly calculate the diffusivity of the streamwise momentum in recircnlating flows. 

Another weakness of the eddy-viscosity concept is the representation of the three normal turbulent 
stresses, by their half-sum - the turbulence kinetic energy - which is equivalent to concede a s/m/far evolution 
of these three components, even if the turbulence anisotropy of flows can be implicitly included in this 
modelling. Consequently, in flows where these three normal components vary in different ways (internal 
zones of wall flows, curved channels, dissymmetrical channels, shock waves, expansion zones, rapid distorsion, 
recirculating zones...), tile eddy-viscosity concept models, even with two transport equations, do not yield 
very satisfactory results. 

The eddy-viscosity concept also has important consequences from the numerical point of view when the 
partial differental equations are solved. Indeed, the acceptance of the eddy viscosity value, usually much 
higher than the molecular viscosity, actually leads to relatively weaker Reynolds numbers (local convection 
and diffusion ratio). This fact enables numerical schemes, usually submitted to low local Reynolds number 
criteria, to be easily extended to turbulent flows, although the real face-value of the Reynolds number is 
much higher. 

Finally, in most of the numerical predictions performed so far, very few fully implicit numerical schemes 
are used to solve the transport equations for k and for e. Consequently, in practical numerical solutions, 
even when the so-called implicit methods are used, there actually exists a time-step limit for time-dependent 
approaches. In the same way, the non-linearity of source terms nearly always needs a local time linearization. 

The two-equation turbulence models are widely used in practical flow configurations, including very 
complex situations. In an excellent review,[12], RODI presented and discussed the numerical results of 
various patterns such as: boundary layers with or without pressure gradients, including eventually transition 
and suction, curved walls, plane or axisymmetrical channeis, free shear layers, with or without natural 
convection, separated flows, flows with swirls, hydraulic applications, turbomachines, thermal exchangers... 
The EUROMECH 180 Congress at Karlsruhe in 1984, made a review of progress with models of the (k,e) 
type [131 . 

By emphasizing the existence of some special cases (wall jet [14][15] or dissymmetrical channel [16][17]) 
where the turbulent shear stress does not cancel out with the mean velocity gradient, HANJALIC and 
LAUNDER [18] replaced the constitutive law (2) by the solution of two of the transport equations (3), the 
contraction of whirl1 leads to tile transport equation of the turbulence kinetic energy k. 

Compared with the turbulence kinetic energy transport equation, the tensorial equation grows richer 
with a new term: the pressure-strain correlation [19]. 

In incompressible cases, this term does not concern the turbulence kinetic energy, since the fluctuating 
motion is divergence free, but it plays an important role in the transport equations relative to each shear 
or normal stress component. In compressible flows, this term adds a compressibility effect which would not 
be negligible through the shock waves. More generally, the role of this term is to make the turbulence state 
more isotropic, by sharing the turbulence energy between its components, hence its name of r ed i s t r i bu t ion .  

The closure of this redistribution term is obtained by the integration of a Poisson equation relative to 
the fluctuating pressure. This integration leads to two distinct mechanisms: i) the first, of a linear nature, 
is named rapid ,  since it results from the action of the mean flow on itself (through the mean velocity 
gradients), ii) and the second, of a quadratic nature, is qualified slow t e rm,  since it ensures a r e t u r n  to  
i so t ropy  with a time-scale borrowed from the decaying rate of  turbulence (r = k/c), nevertheless remaining 
proportional to the anisotropy degree of the flow. Thus, in contrast with the (k, e) which has only one 
characteristic turbulence time-scale, the second order closures introduce in fact, two different time-scales: 
the first borrowed from tim mean motion, and the other deduced from the fluctuating motion. Let us point 
out that the spectral methods for turbulence modelling, proposed by the Ecole Centrale de Lyon, during the 
70's, concern an infinite number of time-scales. 

The integration of the Poisson equation for the fluctuating pressure, necessary for the modelling of 
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the pressure-strain correlation, in addition to the volume integrals, also contains surface integrals taking 
into account the boundary of the flow field. This second part, usually negligible in free flows, again becomes 
important in the regions close to the solid wall. Physically speaking, this term represents the "mirror" effects 
or the "echd' effects resulting from the fluctuation of pressure. Concretely, this term acts in the opposite 
way of the mean term of redistribution, since it searches to enforce the anisotropic character of the normal 
turbulence stresses in the very near-wall regions, with a strong production of the streamwise normal stress 
component, and a severe destruction of the transverse normal stress component. In practical applications, 
this term has not yet given very satisfactory results, and further local arrangements must be included to 
improve the quality of the results [20][21]. Several scientists have tried to neglect this term, and take into 
account the "echo" effect, by adjusting the constants of the model, but this "computer optimization" makes 
the calculated results of the external zones unreliable. Finally, we have to point out that  the effects of this 
contribution are important, not only near the solid wall, but also at the source of the anisotropy mechanisms, 
due to the fluctuating pressure, leading to a maximum velocity under a free surface. 

Because of the absence of any rigorous theory for the modelling of this "mirror effect" reflecting the 
fluctuating pressure (an inviscid mechanism), ItANJALIC and LAUNDEK [22] proposed a closure scheme 
deduced from the modelling of the volume integral of the redistribution, i.e. including the rapid part and 
the quadratic part, associated with a scale ratio l/y (y being the normal distance to the wall) in order to 
cancel this effect far from the wall. Since the scale l is characteristic of the eddies ensuring the turbulent 
diffusion, it is of the same order as the shear layer thickness, which is in turn proportional to y, leading to a 
practically uniform effect of this corrective term close to the walls. Very often, the scale I is replaced by the 
quantity kz/2/e, but this hypothesis is not logical as the last quantity represents a diffusion property whilst 
the reflecting of the fluctuating pressure is essentially an inviscid mechanism. 

Nevertheless, the adoption of the previous closure often leads to important errors owing to some un- 
certainty in the computation of the turbulence dissipation rate c. This weakness appears mainly in the 
simulation of curved channels and in stratified flows, and it gives rise to erroneous predictions of the ratio 
of normal turbulence stresses u2/v 2. Finally, to end with this wall correction term, let us point out that 
according to LAUNDER [23], the damping effect of the normal stress v 2 has some memory effect, even after 
the disappearance of the wall, as in the wake following a flat plate, hence the difficulty to calculate with 
accuracy in this zone. 

After modelling, the transport equation of the Reynolds stresses takes the following general form, for 
incompressible cases: 

with 

a( u-~) 
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Pkk = ~ut OX~ (6) 

We can then state that as for all two equation turbulence models, based on the eddy viscosity concept, 
it is necessary to determine a time-scale representing the decay of tile turbulence kineti~ energy, by the use o f  
the transport equation for the dissipation rate of the kinetic energy of the fluctuating motion. The modelling 
of this equation can be straightforwardly deduced from the Navier-Stokes equations, leading to this form 
[24]: 

with f , =  1.0-- 0 .22Cxp[ - - ( -~2) ]  

A comment should be made for the second order modelling. In this context, the momentum transport 
equation, according to (I), would have a very small linear diffusion term) in comparison with the non-linear 
convective term. In fact, only the viscous stresses having a gradient type behaviour contribute to ensure a 
constantly dissipative diffusion. Consequently, one can expect that this second order modelling simulates the 
non-linear characteristics of the flows more faithfully than the turbulence models using the eddy viscosity 
concept. Then, second order modelling can allow a local transfer of energy from the fluctuating motion to 
the mean motion, a physical aspect observed in some flows containing unsteady organized structures. This 
fact would explain the relative success of second order closure modelling used to predict flows where a strong 
presence of unsteady organized structures exists. 

The framework of this paper does not allow us to discuss in detail all the hypotheses used for the 
closure schemes, as well as the basic physical ideas contained. We restrict this discussion by presenting 
one example of the comparison between the behaviour of the two previous turbulence model families. The 
example selected is the turbulent flow in an S channel, with a circular section, experimentally investigated 
by STEVENS & FRY [25] and numerically predicted by JONES & MANNERS [26] (Figure 3). The results 
obtained with an eddy viscosity two-equation model, of the (k, e) type, lead to a velocity profile far from the 
experimental evidences, (and in the opposite way) whilst second order modelling correctly reproduces the 
specificity of the problem. 

Such behaviour differences seem to justify the Use of second order modelling in complex flows. However 
despite second order modelling being proposed for more than fifteen years, it is not very often applied to 
turbulent complex flows, where it is perfectly adapted. Paradoxically, because of the mfmerical complexity 
for solving the equations when the second order closure is used, this kind of model has so far only been 
applied to the thin shear layers there where the (relative) simplicity of the flow configurations, should allow 
the eddy-viscosity concept turbulence models to be sufficient. Thus, very often, we feel that the relatively 
few improvements brought by second order modelling do not justify the complexity of its implementation. 

If second order modelling is not often used in complex flow configurations as much as it merits, it is not 
owing to the computing cost as we might expect (because of the higher number of equations to be solved), 
but rather because of the mathematical structure of the equations contained in the model. We have already 
mentioned that tim main advantage of the eddy viscosity concept models is the reinforcing of the linear terms 
in the convection-diffusion equations. It is then easy to keep low local Reynolds numbers, from a numerical 
point of view. This advantage disappears in the second order modelling: here the local Reynolds number 
recovers its face-value (convection/molecular diffusion), and the Reynolds stresses act as the source terms, 
and finally the momentum transport equation has a hyperbolic character like the Euler equations. However, 
the solution of Euler equations is not familiar to scientists working in incompressible flows. We have then to 
turn to the field of high speed aerodynamics, where already many high performance numerical schemes exist 
(see other papers in this Conference) well suited to Euler equations. Unfortunately, the major disavantage of 
the classical numerical schemes for Euler resolution is to add some artificial numerical viscosity to stabilize 
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the numerical behaviour. It is then important to check on the numerical viscosity in order to keep it much 
lower than the effects of the turbulent diffusion represented by the divergence of the Reynolds stress tensor. 
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Fig.3.- Comparison between the behaviours of different levels of modelling. 

l~rom the numerical point of view, the solution of equations (5) and (7) needs special care for the source 
terms, because the modelled turbulence equations are not conservative. The numerical treatment used for 
the momentum, mass and energy conservation equations can be extended easily to the conservative terms 
(convection and diffusion) of the turbulence transport equations without major changes, but the success of 
the solution of equations (5) and (7) depends strongly on the treatment of source terms, particularly when 
implicit schemes are used [27], [28] and [29]. 

As already mentioned, one of the weaknesses of the eddy viscosity concept models is their inefficiency 
to represent the internal exchanges between different normal Reynolds stresses, i.e. the components of the 
turbulence kinetic energy. These exchanges are contained in the source terms of equation (5), and more 
particularly in the r e d i s t r i b u t i o n  term. Not wishing to continue to second order modelling, several authors 
prefer to adopt an intermediate way: i.e. Algebra ic  S t ress  M o d e l  (A.S.M.). 

Indeed, we can notice the conservative form of transport terms in the equation (5) governing the evolution 
of the turbulent stresses: because of the conservative property of convective and diffusive terms of this 
equation, it is often more convenient to group these transport terms as: 

[ O(u-~) _ o C t )  

uiuj = UkukUiUJ,Tmm= UkUk[ Pmm-2~] 
(8) 

It is from this form that the algebraic stress models are built. 

This approximation of Tq, which is perfectly justified, is due more to numerical simplicity considerations 
than to that of physical evidence. The right hand side of equation (8) neither contains differential operators 
applied to turbulent stresses, nor individual sources and sinks relative to each stress (for example no Pij). 
Then, if the approximations adopted for the redistribution terms Oij (see the previous definition) do not 
contain the differences of the turbulent stresses, the replacing of 7}j by the R.H.S. of (8) reduces a partial 
differential equation set (5) to an algebraic equation set. In such an approach, only the trace of the turbulent 
stress tensor (otherwise the turbulence kinetic energy k = 0.Su-~) will be determinated by a transport 
equation. As for the two-equation models, these algebraic models must be achieved by another scale equation, 
usually the transport equation for the turbulence kinetic energy dissipation rate ~'. 

Let us remember that the general form of the turbulence stresses (5), in mean steady situations, can be 
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rewritten as: 
o , , o ~  r oo, oo~] ,,IOu, Onj'~ 

~ij  Pi,j ~'ij 

+ pu,6,. + 
p p Oz~ I , Oz~Ox b 

~ j  ¢i./ 

a relationship which is symbolically written as: 

(9) 

Cij  - Di.i = Pij  + P h i q  - q j  (lO) 

Morever, the exact form of turbulence kinetic energy is written as: 

Oj ~ = O& ~OCr~ O r /P ~u~u~)]l . -  L'b~Ou~ azjou~ + + 

C'k Pk Dk eiI 

(11) 

a relationship recasted as: 
Ck--Dk = Pk--~ (12) 

Using (8) to link the transport terms (convective and diffusive) of the Reynolds stresses to those of 
turbulence kinetic energy k, we then obtain: 

Cij  - Di j  = ~ ( C I ,  - D~.) (13)  

which is the baseground of tile algebraic stress models (A.S.M.). Indeed, using (10), (11) and (12), we can 
obtain: 

Po + ~q - qJ = ~ ( P k  - ~) (14) 

By inverting this relationship, we can finally obtain the following forms for the Reynolds stresses: 

2 ~ ~: (1 - C1)(Pij - ~ i i  Pk) + Oijw,1 + ¢ij,~,2 
u lu j  : " ~ 0  " + e P~= (15) 

C = + - = -  1 
c 

with: Pij  and Pk respectively the turbulent stress and turbulent kinetic energy production terms. ¢ q  rep- 
resents the classical pressure-strain correlation, and ~" and el./ represent destruction terms for the turbulence 
kinetic energy and the turbulent stresses respectively. Finally the two terms: ¢ijw,t and ffijt0,2 represent 
the wall effects of the pressure-strain correlation. 

It is difficult to conclude clearly on the algebraic stress model performance. Applied to various turbu- 
lent flows (boundary layers, wakes, with adverse pressure gradient...) the A.S.M. did not mark a definite 
superiority compared with the eddy-viscosity concept models like the (k, g )  type. On the other hand, in 
some flows including the curvature effects, for example in the case of a jet  along a curved wall, RODI and 
SCHEUEREK [30] have obtained clearly better results with the algebraic stress model compared to those 
given by the eddy-viscosity model. 

We present here just an example of this comparison between the predictions obtained by an A.S.M. and 
by a two-equation model of k, ~ type, in a boundary layer along a curved wall, using the experimental data 
of GILLIS eL al. [31] from STANFORD. 

DAVIDSON L. [32]_has also shown that the use of an algebraic stress model can lead to much better 
results, than those of a k,~ model, predicting the separation over an airfoil. 
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Anyhow, we can point out that the algebraic stress models give rise to results less satisfactory than 
those of the second order modelling and sometimes numerical difficulties can arise, more particularly about 
the numerical convergence problem, for recirculating flows or for three-dimensional configurations. 
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Figure 4.- Skin friction development along a convex corner. 

4.- C U R R E N T  R E Q U I R E M E N T S  A N D  R E S E A R C H  P R O S P E C T S  

The development of new scientific and industrial programmes in general, and in aeronautics in particular, 
reveal urgent needs which we shall try to resume, albeit non-exhaustively. 

d.1.- T h e  u n s t e a d y  flows. 

As we have already mentioned, nearly all real flows contain simultaneously both ordered and disordered 
characters. However, it is advisable to distinguish two types of unsteady flows: those governed by a n a t u r a l  
u n s t e a d i n e s s  and those submitted to some forcing by the boundary conditions, or a fo rced  uns t ead ines s .  

The naturally unsteady flows arc characterized by a strong presence of ordered structures, which are 
also called, under some conditions, the coherent s~ructures. Very often, the presence of these structures 
in "industrial flows", is the origin of the rather bad prediction results obtained from classical statistical 
turbulence models. Some intermediate ways are proposed to fulfil this gap, in particular by Large Eddy 
Simulation (L.E.S.) completed by Sub-Grid Modelling (S.G.M.). The work done by research centres such 
as I.M.G. [33], O.N.E.R..A.[34], N.A.S.A.[35], Stanford [36]... lead to excellent simulations in more or less 
academic configurations. 

Another approach, semi-deterministic modelling, uses the same methodology, but it tries to take into 
account all the past knowledges concerning classical statistical modelling [37]. This way consists in splitting 
any instantaneous physical quantity into a time-dependent ensemble averaging part and an incoherent part. 
The ensemble-average, a function of time and space, composes the time-mean value and the coherent un- 
steadiness part: this ensemble-average will be directly determined by the solution of the unsteady averaged 
Navier-Stokes equations (ensemble averaging sense). On the other hand, the effects of the incoherent part 
are taken into account by the solution of the closure equations, in the same way as for classical statistical 
modelling. From a practical point of view, this approach is related to the traditional way of classical tur- 
bulence modelling, it means that we will again have two modelling levels: the eddy-viscosity concept level 
and second order modelling. In fact, the so-called semi-deterministic modelling is different from the classical 
one, in the real sense of the fluctuating parts which currently only contain presently the apparently random 
characters. Consequently, and concretely, the role of the turbulence is then notably reduced in flows where 
the transition occurs or where the turbulence is not fully developed. 

Let us consider the example of a backward-facing step, at high Reynolds numbers. The 1981 Stanford 
Congress contributions showed that nearly all the predictions obtained with the classical (k, c) model, lead 
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to a too short  reat tachment length, compared with the experimental evidence. A more elaborate analysis of 
the physical phenomenon reveals a very particular behaviour of turbulence in the recirculating zone, where 
the turbulent shear stress is unusually low compared with the level of normal turbulent stresses, the sum of 
which is used for the calculation of the eddy viscosity N (k2/t). The special character of turbulence in this 
recirculating zone is actually the consequence of the organized structures, issuing from instabilities of the 
Kelvin-Helmholtz type, in the mixing shear layer crcated at the step edge, the physical properties of which 
depend on those of the separated boundary-layer. 

In the context of semi-deterministic modelling, with a closure using the eddy viscosity concept based 
on a two-equation model of the (k, e) type, the numerical prediction leads to more satisfactory results, both 
for the reat tachment length as for the wall pressure evolutions, (figures 4 and 5) [38]. 

The forced unsteady flows also give rise to new studies during the last decade, especially in periodic mean 
motions. The presence of a new time scale, fixed by the external conditions, may lead to some amplitication 
phenomenon of turbulence, or in opposition, to the relaminarization mechanism of turbulence, in function 
of the ratio of the external time-scale compared to the relaxation-time of turbulence represented by the 
quadratic part of the redistributive pressure-strain correlation term in equation (5). 

Figure 5.- Iso-vorticity contours on the backward facing step predicted by a semi-deterministic model. 
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So far, few theoretical studies are devoted to unsteady turbulent flows, or even in periodic situations. 
According to LAUNDER, [39], it is usual to admit four frequency categories: 

• Quasi-steady flows: where the changes of the mean flow are so slow that  their influence on the turbulent 
structures is negligible. Consequently, the classical turbulence models, developed in a stationary and 
ergodicity context, should be used without change. 
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• Slow unsteady flows: where the time variations of mean quantities, and more particularly, the mean 
momentum, are significant, but the time-scales remain intact. Then the classical turbulence can be used 
again. 

• Intermediate unsteady flows: where the unsteadiness effects notably modify the turbuleut structures via 
the turbulent shear stress. One can point out that the classical "universal" laws, such as the logarithmic 
velocity profile in the near-wall, are no longer valid. This flow category probably needs more modelling 
efforts before obtaining correct predictions. 

• High unsteady flows: where the turbulence kinetic energy seems to be "frozen" over major regions of 
shear flow (but shear stress does not). It is noticed that the mean flow seems to become independent of 
the turbulence level. Again, turbulence models must be able to correctly describe this fact. 

The importance of this aspect has led several research groups to undertake studies in order to obtain 
more knowledge for the improved modelling of unsteady turbulent flows.' If in laminar flows, the unsteady 
character is represented by the square of the Stokes parameter wL2/~ ,, where w is the angular frequency of 
a periodic motion and L is a characteristic length scale, in turbulent flow, it is tempting to replace v by the 
eddy-viscosity built with the mean friction velocity U~ (case of the wall boundary layers) and the same length 
scale L. The new unsteadiness parameter would be wL/Ur. According to some experimental investigations, 
see for example [40], the value of 5 of this parameter seems to be typical of the "intermediate" unsteady 
flows and the value of 50 corresponds to the high frequency behaviour. Using more details on the unsteady 
boundary layer, namely by direct simulations, and by second order turbulence modelling, the author and 
his colleagues tried to take into account the ratio of the unsteadiness frequency and the inverse of the local 
turbulent turnover time-scale, i.e. the quantity wk/e. Since the ratio k/< increases as one proceeds from the 
pipe wall to the centre, it clarifies why the "freezing" behaviour occurs first in the core region. 

Again, in this kind of unsteady flows, second order turbulence modelling often shows its superiority when 
predicting the turbulence characteristics, compared to the eddy-viscosity concept models. For example, in 
the oscillating boundary layer on a flat plate problem, the direct simulation of P. SPALAI:tT [41] showed a 
relaminarization in the near wall, a phenomenon which seems be correctly simulated only when second order 
closures, including the highly anisotropy terms, are used (figure 7) [42]. 

More specific studies are undertaken for unsteady boundary layers, by COUSTEIX's group at CERT- 
ONERA (see for example the reference [43]), and the successful application of the second order modelling in 
intermediate unsteady flows by the UMIST group of Pr. LAUNDER and LECtIZINER [21]. 

In conclusion, the turbulence modelling of the unsteady flows could be done only when strong collab- 
orative works exist, between fine experiments, for example [44], direct simulation studies, for example [45], 
and modelling efforts. 

4.2.- Var iab le  de ns i t y  t u r b u l e n t  flows. 

If progress in turbulence modelling has incontestably been very important for the past twenty years, the 
turbulence models are usually obtained in incompressible situations, where, besides the relative simplicity of 
the equations to be closed, the divergence free of the mean and fluctuating velocities enables clear explana- 
tions of the physical processes, nanmly those of the redistribution due to the pressure-strain correlation. This 
simplicity does not exist in situations where the density varies ill space and in time. Although tile averaging 
equations remain identical in all cases, in practice, it is worth distinguishing various origins of these density 
variations in order to identify some specific simplifications in each case: 

• Density variations by compress ib i l i ty  effects of high speed flows, where the coupling of equations 
governing the motion is due to tile mean density changes, which in turn, come from tile thermodynamical 
aspects. 

• Density variations by t h e r m a l  effects even in slow speed flows, situations where the thermodynamic 
aspects are still important, but the compressibility effects are negligible.. 

• Density variations by mass  he t e rogene i t y  issuing from the monophasic mixing of different gases of 
different densities, even in isothermal and/or isobar situations. 
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* Density variations by global compress ion ,  when the whole room volume is subjected to important  time 
variations. This state leads to some studies concerning compressed turbulence [46][47]. 

In some practical industrial applications, for example in the piston engine, usually several origins of 
density variations are simultaneously present, this fact substantially increases the difficulty of the problem 
to be solved. 
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Figure 7.- Skin friction during a period, for the boundary layer on an oscillating fiat plate. 

The first problem to be examined is the higher number of unknown correlations to be handled: this fact 
is due to the fluctuating density. To limit the "inflation" of the unknowns to be modelled, several variable 
regroupings are proposed. Let us remember that  for variable density turbulent flow, we have: 

pUiVk = fiUiUk + ptU~Uk + ptutkUi 

(i) (2) (z) 
(16) 

+ ,~u~n~, + p'~,lu~, 
(4) (5) 

In the incompressible case: 

"pU~U~ ~UiUk + - ' ' = pu~u k (17) 

(1) (4) 

For physical reasons, but also for commodity, compared to the incompressible case, FAVRE [48] and 
[49], proposed a specific regrouping, leading to the so-called mass weighted averaging: 

i ! I l 

pUiUk = (1) + (2) + (3) + P u v p  uk *pOiOk 
(18) tat rut 

( 4 )  + ( 5 )  P i'P k + pn,,iu,, k 
P 

Using other physical and numerical arguments, HA MINH-LAUNDEK-Mc INNES [50] tried to distin- 
guish the convective velocity and that  of the transportable momentum: 

pUiUk = ~ = Gi.Uk + .qiu~ 

(t)+O) (s)+H)+(5) 
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~ ,  = 707 = pG, + p'u--~, and g,' = p'G, +pu; + p u , - p . , '  ' (19) 

Desiring, on the contrary, to emphasize the specific role of density variations, and more particularly in 
the ease of isothermal and isobaric mixing of different gases, CHASSAING [51][52], has developed a new 
approacli: 

~ m  

pu, v~ = ~ + pu;,,'~ + ~ ~--~u, (20) 
(1) (4)+(5) (2) (3) 

avoiding then the modelling of the term ~ = -PU--~'i which appears in the FAVRE splitting. In the case of 
P 

mixing two different density gases, the mass fluxes can be derived as: 

1 C 1 - C  
- k =¢.p = a p C  + b 

p pl P2 

= a(~ + 7~) + b and p' = a(p'd + ~' - (21) 

Consequently: 
a 

(=-- " ~ )  = 1 - aC pT' f f  :~ p f '  = a ( C ) " ~ ' f f  

- ~ . . t _ _  - / / pu i - a(C)p7 u i and ~ 7  = a(d)~-7~ (22) 

Finally, let us point out a new formulation of statistical equations, based on mass (and not on volume) 
integration, which is developed by C. REY [53], to handle subsonic compressible turbulent flows. 

In any event, we can show that the more the decomposition is complete, the more the information is 
important, but complete decomposition means a higher number of equations to be solved, including a higher 
number of empirical constants to be "calibrated" leading to more uncertainty in modelling. Besides, don't  
forget that more equations to be solved means more numerical errors in the results. For all these reasons, 
and in spite of some improvements expected about the turbulence modelling, it seems to us that the FAVRE 
mass weighted averaging is presently the more reasonnable approach for the numerical simulation of complex 
compressible turbulent flows. 

Finally, for the complex compressible flows, such as the shock/boundary layer interaction, the analysis 
of results, in particular about the lambda shock, imply the necessity for tlm use of second order turbulence 
modelling [5][54]. Indeed, figure 8 shows that a prediction with an eddy viscosity model of (k, 6) type, does 
not allow the natural capture of the second shock (the turbulent energy calculated by the (k, ¢) model being 
too high), as obtained with second order modelling. The main reason for this fact is that in such a flow, 
the two normal turbulent stresses u s and v z play two different roles: the streamwise normal turbulent stress 
represents a general level of turbulence, and its kinetic energy, while the transverse component ensures a 
diffusion role. In recirculating flows resulting from the shock/boundary layer interaction, these two quantities 
are quite different in level and in evolution: only second order modelling would correctly simulate this 
behaviour. 

4.3.- T h e  wall  t rans fe rs .  

One of the major difficulties appearing in the indirect numerical simulation of turbulent flows (i.e. with 
the use of turbulence models) consists of tile wall transfer prediction. Indeed, the strong gradients of physical 
quantities (mean and fluctuating) in the vicinity of solid walls, often require an extremely fine grid in this 
zone, leading to very high computing costs. In a schematic way, it is possible to distinguish two approaches 
for the calculation of this zone: 

• Either by a computation up to the true wall with the handling of the viscous effects in this zone by 
including the "damping low Reynolds fnnctiong' in the standard turbulence models which were usually 
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established in the fully developed turbulence context. The role of these low-Reynolds effect laws is to 
restore the molecular viscosity effects in the diffusion mechanism. 

* Or by the use of the "wall law¢', algebraically obtained by a local analytical integration near the wall of 
turbulence transport equations, under COUETTE's hypothesis. This approach, much cheaper than the 
previous one, is unfortunately valid only for fully developed turbulent boundary layers, without pressure 
gradients or with moderate favourable pressure gradients. 

Today, several studies have shown that the "low Reynolds damping law" approach would be extended 
to cases with favourable or adverse pressure gradients, provided that these gradients are not too strong in 
the positive case (fig.9a). However, the use of the "wall law¢' would only be possible for moderate favourable 
pressure gradients. (fig.9b), as shown in the thesis work of F. HANINE [55]. 
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Figure 8a.- Shock/Boundary Layer Interaction predicted by (k, e) model [5]. 
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Figure 8b.- Shock/Boundary Layer Interaction predicted by second-order modelling [5]. 

5.- C O N C L U D I N G  KEMAI ' tKS .  

This review shows that we currently dispose of a fairly varied panoply of turbulence models to numer- 
ically simulate many turbulent flows from the more simple to the most complex configurations. We must 
first recognize that for twenty years, the development of turbulence modelling was possible owing to good 
numerical tools developed by numerical scientists for our benefit. The role of the physicist should then be, on 
the one hand, to understand tile essential part of his physical problem to be solved, and, on the other hand, 
to have good knowkedge about the basic ideas on which the various numerical schemes proposed are built, 
in order that the numerical way chosen is in perfect coherence with the physical aspects to be simulated. 
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However, there remain important needs in numerics before we are able to solve many complex flows 
presenting practical industrial interests. For example, the high accuracy numerical schemes developed to 
handle the discontinuities in flows such as shock waves, where very strong streamwise gradients exist, do not 
seem to be reliable in flow situations which are dominated by very strong transverse gradients, for instance 
in the case of co-axial supersonic jets containing two very different density fluids (hydrogen and oxygen for 
example), a configuration which often exists in the eryotechnie rocket engines, including combustion. 
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Figure 9a.- Results obtained with the use of "low Reynolds damping functions". 
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As a conclusion, let us present in figures 9a and 9b, the views of variable density axisymmetric jets, 
obtained respectively by CItASSAING [56] and BINDER el al. [57]. These pictures reveal the existence of 
natural "lateraljetd' that no current turbulence model can predict. Thus, in order to obtain, in the near fu- 
ture, available tools to numerically simulate this kind of "mysterloug' physical phenemena, important efforts 
must be devoted to turbulence studies both from an experimental point of view, as for direct simulations, 
and theoretical modelling. 
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Figure 10a.- Lateral jet  [56] Figure 10b.- Lateral je t  [57] 
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Abstract  

In this presentation, a brief review of domain decomposition methods with 
emphasis on the applications to solving elliptic problems arising from the Navier- 
Stokes equations via operator splitting methods is given. The singularly per- 
turbed convection-diffusion equation is chosen as a model problem. We consider 
both overlapping (multiplicative and additive Schwarz) and nonoverlapping 
(Neumann-Dirichlet and Neumann-Neumann) domain decomposition methods. 
Some convergence results for particular cases are presented. 

1 I n t r o d u c t i o n  

Domain decomposition methods have become increasingly important for the numeri- 
cal solution of partial differential equations with many applications in natural science 
and engineering. Originally, the term "domain decomposition" probably appeared in 
[15]. Underlying the surge of interest is the need for studying complex mechanical 
and physical phenomena by coupling various mathematical models. Efficient numeri- 
cal algorithms are needed for solving large scale algebraic problems arising from finite 
difference, finite element, and finite volume approximations of partial differential equa- 
tions on various meshes including composite ones. In addition, numerical software for 
parallel computers is required. 

I Actually, we could speak about two topics: domain decomposition methods and 
domain decomposition methodology. The latter is much wider than the the former. It 
includes coupling of different mathematical models, mesh construction, and approxi- 
mation via subdomalns as well as block data partitionings to solve algebraic problems 
on 'parallel computers. 
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The goal of this presentation is to give a brief review of domain decomposition 
methods with emphasis on the application to solving elliptic problems arising from 
the Navier-Stokes equations via operator splitting methods [4]. The presentation 
consists of two main parts. In the first part, we formulate the problem under con- 
sideration and describe overlapping domain decomposition methods, in particular, 
multiplicative and additive Schwarz methods. In the second part, we consider several 
nonoverlapping domain decomposition methods based on subdomain iteration pro- 
cedures with Neumann-Dirichlet boundary condition and some other substructuring 
algorithms. 

To describe domain decomposition algorithms, we consider as a model differential 
problem the following singularly perturbed convection-diffusion equation: 

f - . ~ u - F . u + w 2 u - - u A u + ( b o V )  u+w2u  = go, in ft, 
u = 0 on Oft, (1) 

arising from approximations of parabolic problems: 

Ou - ~ + £ : u  = f in ( t o + A t )  x ~ ,  
u = o on (to + a t )  × Oft, (2) 

u(to, z)  = uo(x) in 12, 

either by fullyimplicit or by Crank-Nicolson schemes. Here his a given vector-function 
such that div b = 0 and w 2 = 1~At, where At is a considerably small parameter. The 
other given functions as well as the boundary Oft are assumed to be at least piece-wise 
smooth. 

Let 12h be a mesh partitioning of ft. ~h consists of elementary cells e~ (trian- 
gles, rectangles, etc.) which are unified within subdomalns (superelements, clusters) 
~(0, I = 1 , . . . ,  m. Thus, the original mesh domain fth is decomposed (partitioned, 
divided) into overlapping/nonoverlapping subdomains f~(h 0. 

We denote a mesh problem arising from finite difference, finite volume, or finite 
element methods (or some combination of these methods) by 

£.o,,hu h = gh in ~h, 
u h = 0 on  0fth.  (3) 

T h e  algebraic representation of this mesh system sometimes can be more conve- 
nient: 

Au =- Ao,u = go,, go, E R N. (4) 

To define a matrix A, we can use the assembling procedure 

A = A~ = {a(2},  (5) 

where a~ ) are stiffness matrices associated with mesh cells e~h. For every subdomain 
~(0, we also can define stiffness matrices 

A~) = {a~)} ,  (6) 

taking into account those cells el which belong to ~(0. If subdomalns do not overlap, 
then 

A ~ =  {A~)}.  (7) 
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It is clear that, in this case, with suitable permutation matrices Pk we have 

[ ] A~, = ~ Pk A~) 0 p~. (8) 
k=l 0 0 

All these notations will be used to define various domain decomposition precondi- 
tioners. 

2 O v e r l a p p i n g  D o m a i n  D e c o m p o s i t i o n  M e t h o d s  

To define this set of methods, we assume that every mesh node of flh belongs to the 
interior of at least one subdomain f~{h k). For every subdomain ~(h k), we divide the set 
of mesh nodes into two groups: the first collects all nodes from the interior of ~(h k), 
while the second comprises those of nodes which belong to F(h k) = 0~(h k) \ 0Oh. After 

that, the matrix A~ k) can be represented in the following 2 × 2 block form: 

lrA'"] a(k) a(k) . (9) 
" ' r l  + ~ r r  

We also introduce the matrices 

and 

[ Ai l ) o o] 
Ak= Pk 0 0 0 pT (10) 

0 0 0 

Hk - A+ = Pk 
[A~kl)]-I 0 0 

n T  
0 0 0 r k ,  
0 0 0 

(11) 

which will be used to define the overlapping domain decomposition preconditioners. 

2 . 1  M u l t i p l i c a t i v e  S c h w a r z  m e t h o d s  

The iterative procedure 

&,,hUh,, = g~ in ~), 
l - r~  

'uh, k,+~ --~-'~h{. ~ 1 _  on P(h k) , 

ulh.~_ = 0 on O~h, 
uh.k = Uh+k~l in nh \ f~(h k), 

k = 1 , . . . , m  

is said to be a multiplicative Schwarz method. Using matrix notation, we have 

I k l.j~" k--1 

or, in more compact form, 

u'+l--u=TMs(u'--~), 

(12) 

(13) 

(14) 
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where u is the solution vector of system (4), 

TMS = T m . . . T , ,  

and 
T k - - E - H k A .  

It can be easily shown that the matrices Tk are projectors. The convergence of the 
multiplicative Schwarz method is proved at least for two important cases, when the 
matrix A is either symmetric positive definite or an M-matrix. The first case appears 
from diffusion equations (b - 0). The second case appears from convection-diffusion 
equations under special assumptions about the discretization method (for instance, 
the usage of the upwinding technique). 

The multiplicative Schwarz methods were studied by S. Sobolev, S. Mikhlin, 
I. Babu§ka, J.-L. Lions, M. Dryja, and O. Widlund. The most complete results were 
obtained by P.-L. Lions in [8]-[10]. 

On the basis of the references mentioned above, the following conclusion about 
the rate of convergence of multiplicative Schwarz methods can be made. Assume that 

(k) 
a mesh node x E ~h and denote the distance between x and 0fl (k) by 

d(x; Ol2 (k)) = min Ix - y[. (15) 
yEOfI(k ) 

If for any mesh node x ~ f~h a subdomain fl(h k) exists, such that 

d(x; 0 ~  k~) > c_o, (16) 
OJ 

where co is a positive constant independent of fib, the estimation 

p(TMs) <_ q (17) 

holds, where q < 1 is a positive constant independent of fib. Here p(TMs) is the 
spectral radius of TMS. 

In the case when the convergence of the multiplicative Schwarz method cannot 
be proved (for instance, for mesh systems arising from approximations of the Navier- 
Stokes or Euler equations), one should couple it with the GMRES-procedure. Re- 
member also that block Gauss-Zeidel methods applied to system (4) are particular 
cases of the multiplicative Schwarz methods. 

2.2 Addi t ive  Schwarz M e t h o d s  

The matrix 
HAS = ~ Ilk (18) 

k 

is said to be an additive Schwarz preconditioner based on the partitioning of fib 
into overlapping subdomains ft (k). The convergence of the stationary preconditioned 
Richardson method with the iteration matrix TAS = E - HAsA with the precondi- 
tioner HAs from (18) can be proved only for some special cases. 

Assume that every mesh node of f~h belongs to the interior of only one subdomain 
f~{h k), i.e., cannot belong to the interior of two different subdomains. Then this method 
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is convergent if the matrix A is either symmetric positive definite or an M-matrix. In 
this particular case the method mentioned above is fully equivalent to the block Jacobi 
method [19]. 

The additive Schwarz method was introduced by A. Matsokin and S. Nepom- 
nyaschikh. The theory of the additive domain decomposition methods was developed 
by J. Bramble, X.-C. Cia, M. Dryja, P.-L. Lions, J. Pasciak, O. Widlund, and J .Xu 
[5], [6], [8]-[12]. 

2.3 N e w  O v e r l a p p i n g  Domain Decomposit ion Algorithms 

Partition the domain fth into nonoverlapping subdomains ~(h k) and extend them to 
subdomains ~(h k} such that 

d(Fk; rk) = rain I x - Yl > 0, (19) 
zEPk 
yEPk 

where Fk = 05(h k) \ 0~2h. Define diagonal matrices (~)k with nonnegative diagonal 
elements, such that 

E Qk = E (20) 

and for any x ' ~  (k) the corresponding diagonal element of Ok is equal to zero. Define 
the overlapping domain decomposition preconditioner by 

m 

H = E Q k Y k .  (21) 
k=l  

Under the constructions made for the iterative procedure 

u k+a = u k - ~ r ( A u  k - f) ,  (22) 

the following convergence result can be proved [17]. Assume that two independent of 
f~h positive constants cl and c2 exist such that the inequality 

Cl d(~k; rk) > ~ ln(c2 • w ~) (23) 

is valid for any 1 < k < m and a > 0. Then the estimation 

1 
- ~ A  < c a ~  - ca(Zxt)" (24) E 

holds with some positive constant c3, where ca is independent of fth and H" II is the 
Euclidian norm. It is clear that similar estimations can also he established for some 
other important norms. 

From inequalities (23) and (24), it immediately follows that a prescribed accuracy e 
for the solution vector can be reached even within one iteration step if the overlappings 
between subdomains are sufficiently large. For instance, to reach accuracy O (Ata), 

we have to choose d(Pk;rk) = O ( a V ~  × l n ~ )  i f A t  << 1. Otherwise, we have to 
x J 

use several steps of the iterative procedure, or even accelerate it by GMRES if the 
value in the right hand side of (24) is not sufficiently small. 

We describe two examples of practical applications of the above domain decom- 
position methods. 
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Example  1. Spli t t ing into subproblems via interface 
boundar ies .  

Denote the interface boundary between subdomains ~(h k) by 

= k )  , (25) 

and extend this boundary to a subdomain Gh such that the following inequality 

d(Fh; OGh \ Ol2h) = min Ix -- Yl > -~ ln(cs w~) (26) 
x~h 

y E OGh\Otlh 

holds with some positive constants c4, c5, and a, which are independent of fib- Then 
for given ~ = (At) ~, ~ > 0, the constants c4, c5, and the value of a can be chosen for 
the estimation 

]]Qr(HGg -- A-lg) l]  < (27) 
to be valid. Here Ha is the matrix from (11) related to the subdomain Gh, and Qr is a 
diagonal matrix with the diagonal elements equal to 1 if they correspond to the mesh 
nodes belonging to Fh, and zero otherwise. After the calculation of the components of 
the solution vector for the boundary Fh, the original mesh system will be divided into 
m independent subproblems with the Dirichlet boundary condition on the interface 

Two other methods to divide the original global mesh system into independent 
of subsystems via explicit schemes were proposed and developed by C. Dawson, 
T. Dupont [7], [10], [11], and H. Blum, S. Lisky, and R. Rannacher [2]. 

Example  2. Coupling of addit ive and mult ipl icat ive domain  
decomposi t ion  algori thms.  

Let us partition f~n into square-like subdomains ~(h k), k = 1, . . . ,  m similar to the 
black-red partitioning of mesh nodes in the SOR-methods (this partitioning is also 
known as the chess-like one). We unify the black colour subdomains ~(1),. . . ,~(,) 
into the subdomain G (1), and the others into the subdomain G (2) (see Fig. 1). Then, 

we embed every subdomain ~(k) into larger subdomains f~(k), k = 1,. . .  ,s such that 
the inequalities (23) and estimation (24) with appropriate values of cl, c2, c3, and a 
are valid (see Fig.2). 

The computational procedure consists of two steps. At the first step, we solve 
subproblems from the subdomains 12(h k), and then restrict the solutions onto the sub- 
domains ~(k), k = 1 , . . . ,  s. At the second step, we solve the subproblems for the 
square-like subdomains ~(h k), k > s from G(h 2) with the Dirichlet boundary values 
having been calculated within the first step. A numerical investigation of the algo- 
rithm of this kind was done by G. Meurant [11]. 

There is one more interesting possibility of application of the overlapping domai n 
decomposition approach described above to the unsteady convection-diffusion prob- 
lems via schemes with the local time stepping. 
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Figure 1: A piece of the chess partitioning 

i i 

r~J 

• . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  J 

Figure 2: Examples of subdomains ~(k) and 12(h k) 

3 Nonoverlapping Domain  
Methods  

Decompos i t ion  

In this section we assume that ~(h k) = f~(k), i.e., 12h is divided into nonoverlapping 
subdomains ~(h k). Let us define two sets of matrices. The first one is defined by 

[ [~(k)]+ 01 Hk = PkDk L "'~ J DkP T, (28) 
0 0 

where [A (k)] + is the generalized inverse for A (k) (simple inverse, if A (k) are nonsingu- 
lar), and Dk are diagonal matrices such that ~]k Dk = E. 

To define the second set of matrices, we have to introduce the Schur complements 
of A (k) by 

Sk ~(k) ~(k)[a(k)]-la(k ) (29) = - w r - - - - r l  [--11] --rx. 

Then we define the required set of matrices by 

~k = -Pl"nl'~+nl'~ [~'~] ~ , ,  ~ ~ ,  ~ ,  (30) 

where P?) and D~ ~) are the Schur complements of P& and Dk correspondingly. 
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3.1 Element-by-Element and Neumann-Neumann Domain 
Decomposition Preconditioners 

Element-by-element preconditioners are defined by 

trb 

HEE = E Hk, (31) 
k = l  

with Hk from (28). The choice ~(0 = e(k) is the simplest. Numerous applications 
of element-by-element preconditioners can be found in papers by T. Tezduyar and 
his co-authors [10]-[12]. 

The Neumann-Neumann domain decomposition preconditioners were introduced 
and developed by R. Glowinski, P. Le Tallec, M. Wheller, and others [8]-[12]. These 
preconditioners can be defined by 

RNN = ~ Rk. (32) 
k= l  

Originally, they were introduced in a different way. It is clear that the preconditioner 
(32) is equivalent to the preconditioner (28) applied to the reduced system with the 
Schur complement matrix S = {Sk}. 

The theoretical and numerical results concerning preconditioners (28) and (32) are 
obtained only for the symmetric positive definite case. In any case, the application of 
these preconditioners to convection-diffusion problems seems to be very attractive. 

3.2 Neumann-Dirichlet Domain Decomposition Precondi- 
tioners 

Divide flh into two nonoverlapping domains fl(1) and fl(h 2) with the common boundary 
Fh, i.e., F O) = F(h 2) = Fh and define the matrix A~ ) using the different ordering of 
vector components by 

[ a(2) a(2) l 
" - r r  - - r2  (33) 

A~ ) =  A(2) A~22) " 
"2F 

Then the matrix 

where 

HND = B ~ ,  (34) 

A(1) a(1) 0 
11 ~ t l r  

BND = A (1) a(1) a(2)[A(2)]-1A(2) a(2) (35) r l  --rr  + "'r2 ~"22J --2r "-r2 
0 A ~  A ~  

is said to be the Neumann-Dirichlet domain decomposition preconditioner for the 
matrix A. Preconditioners of this kind, based on the sequential solution of subprob- 
lems with alternating Dirichlet and Neumann boundary conditions, were introduced 
by P. Bjorstad, J. Bramble, M. Dryja, A. Matsokin, J. Pasciak, A. Schatz, O. Wid- 
lund, and other numerical analysts [1], [2], [8]-[12], [18]. The numerical technique was 
developed in [16]. 
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All theoretical and numerical results were obtained from symmetric positive def- 
inite matrices. The methods involved can be used to solve Poisson equations for the 
pressure as well as to construct preconditioners for the Stokes problem. The applica- 
tion of the Neumann-Dirichlet domain decomposition technique to the Stokes problem 
was considered by J. Bramble, J. Pasciak, and A. Quarteroni [9]-[11]. 

4 C o m p a r i s o n s  a n d  C o n c l u s i o n s  

It is almost impossible to give acceptable comparisons of the domain decomposition 
methods which were described above. These methods are very popular but we have 
very few information about their computational and communicational properties from 
numerical experiments and applications. 

The only thing that can be said definitely is: the multiplicative domain decom- 
position methods have better convergent characteristics in comparison with additive 
methods (like block Ganss-Zeidel methods in comparison with block Jacobi ones). At 
the same time, the multiplicative methods are not well suited to parallel computers. 
Moreover, they require the use of more accurate inner solvers (especially for sub- 
problems with Dirichlet boundary conditions), contrary to the corresponding additive 
domain decomposition algorithms. 

We did not even give here a more or less complete overview of domain decompo- 
sition algorithms which can be applied, after some modifications, to computational 
fluid dymnamics. We only looked through those of them which can (probably) be 
used to solve applied problems on parallel computers. For instance, we did not con- 
sider here an interesting approach for the separation of the global problem (3) into 
several subproblems with nonoverlapping subdomains. It is based on specific explicit 
schemes on interface boundaries, developed in papers [2], [7]. We also did not consider 
algorithms with subdomaiu local time stepping [14]. 
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1. INTRODUCTION 

Over the last decade, much attention has been devoted to the development and 
use of unstructured mesh methodologies within the research community. This 
enthusiasm however, has not always been shared by the applications and industrial 
community. The promise of easily enabling the discretization of complex geometries 
has been counterbalanced by questions of accuracy and efficiency. Furthermore, the 
dearth of results concerning viscous flow calculations using unstructured meshes has 
produced skepticism concerning the value of unstructured mesh techniques for practical 
aerodynamic calculations. 

There is no doubt that block-structured techniques have proved extremely 
effective in discretizing very complex geometries. However, unstructured grid tech- 
niques offer additional inherent advantages which may not at first appear evident. The 
possibility of easily performing adaptive meshing is perhaps the largest advantage of 
unstructured grid methods. In fact, the implementation of adaptive meshing techniques 
for structured meshes has generally been found to incur unstructured-mesh type over- 
heads [1]. Furthermore, although unstructured grid data-sets are irregular, they are 
homogeneous (as opposed to block structured grids where differentiation between 
block boundaries and interiors must be made). One of the consequences of this pro- 
perty is that unstructured-mesh type solvers are relatively easily parallelizable. While 
unstructured mesh solvers always incur additional memory and CPU-time overheads 
due to the random nature of their data-sets, large gains in efficiency can be obtained 
by careful choices of data-structures, and by resorting to more efficient implicit or 
multi-level solution procedures. When combined with adaptive meshing and paralleli- 
zation, these can result in truly competitive solution procedures. 

In the following sections, a brief outline of some of the various approaches 
currently in use in unstructured mesh Solution strategies is given, and the various 
advantages and trade-offs of each method are discussed. This is followed by a set of 
illustrative example solutions taken from the author's own work, which include two- 
dimensional viscous flows and three-dimensional inviscid flow solutions on sequential 
and parallel machine architectures. 
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2. DISCRETIZATIONS 

2.1. Vertex Based and Cell-Centered Schemes 

The first choice which arises in the context of unstructured mesh discretizations is 
the issue of cell-centered versus vertex-based schemes. Unlike the situation for struc- 
tured grids, where the differences between these two types of schemes consist princi- 
pally of different boundary condition treatments, the situation for unstructured meshes 
is quite different. Whereas a hexahedral s~uctured mesh contains the same number of 
cells as vertices (asymptotically neglecting boundary effects), an unstructured 
tetrahedral mesh with N vertices contains a N tetrahedral cells, where u is usually 
between 5 or 6 (there are twice as many triangles as vertices in two dimensions). 
Thus a cell centered scheme for unstructured meshes requires the solution of 5 to 6 
times more unknowns than a vertex based scheme operating on the same grid. There- 
fore, a cell-centered scheme can be expected to incur substantially higher memory and 
CPU overheads on a given grid than a vertex scheme. 

On the other hand, the solution of a larger number of unknowns would suggest 
that higher accuracy may be achieved on the same grid using a cell-centered scheme. 
If one visualizes an unstructured mesh as a simple graph (i.e. a collection of vertices 
joined together by a set of edges or links), then the vertex scheme is seen to operate 
on the original graph of the grid, and the cell-centered scheme on a dual graph, i.e. the 
dual obtained by placing a vertex at the center of each tetrahedron, and associating a 
link with each triangular face of the tetrahedra, thus joining neighboring cell centers. 
The original graph thus contains N vertices and (u + 1)N links, whereas the dual graph 
contains aN vertices and 2t~v links. In the original graph, the degree of each vertex 
(number of incident links) is variable, but averages out to 2(u + 1). In the dual graph, 
the degree of each vertex is fixed and equal to 4. By comparison, the degree of each 
vertex in a hexahedral mesh is 6, for both cell centered and vertex schemes. 

Thus, although the vertex scheme contains 5 to 6 times less unknowns on a given 
grid than the cell-centered scheme, these vertices are more tightly coupled than those 
of the call-centered scheme. This in turn suggests that, although there are less ver- 
tices, the discretization at each vertex may be more accurate than in the cell-centered 
scheme. 

Practical evidence indicates that on a given grid, for inviscid flows, call-centered 
schemes appear to yield somewhat higher accuracy than vertex schemes. The crucial 
question is thus whether this perceived increase in accuracy is sufficient to overcome 
the substantial memory and CPU overheads incurred by the cell centered schemes. 
Unfortunately, few direct comparisons have been made between vertex and cell- 
centered unstructured schemes, and these have usually been hindered by the use of 
different discretization schemes and/or different grids. This is an area which should be 
further investigated in the future. Furthermore, the above discussion illustrates the 
dangers of comparing vertex and cell-centered unstructured schemes with each other or 
with structured grid solvers based on the number of unknowns, without regard for the 
amount of connectivity between the unknowns. 

2.2. Central Difference and Upwind Schemes 

The same benefits, trade-offs and controversies exist concerning the use of 
central-difference schemes (with additional artificial dissipation) and upwind schemes 
on unstructured meshes as in the structured mesh context. The equivalent of a 
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central-difference discretization can be formulated on an unstructured mesh as a Galer- 
kin finite-element discretization where the variables are stored at the vertices of the 
mesh and the fluxes are assumed to vary piecewise linearly over the cells of the mesh 
[2,3]. This results in a nearest neighbor stencil which is non-dissipative. Additional 
dissipative terms are thus constructed as a blend of a Laplacian and a biharmonic 
operator, which correspond to the second and fourth differences employed in the struc- 
tured mesh context for damping out oscillations in the vicinity of shocks, and in 
smooth regions of the flow, respectively. These schemes are simple to construct and 

relatively inexpensive to compute. Furthermore, they are easily linearizable for use 
with implicit schemes [4]. The explicit control over the amount of dissipation in the 
scheme can be viewed either as an advantage (additional control) or as a disadvantage 
(additional input parameters). Additional improvements to central difference schemes 
are possible, such as the use of matrix valued dissipation [5], which attempts to scale 
the dissipative terms among the various wave components of the governing equations. 

Upwind schemes are more complex and expensive than simple Galerkin finite- 
element schemes, but offer the possibility of capturing shocks with higher resolution. 
The amount of dissipation is automatically determined by the scheme and split 
appropriately between the various wave components of the governing equations. The 
most successful upwind schemes for unstructured meshes have been those based on 
flux differencing [6,7,8]. The introduction of multi-dimensional reconstruction for the 
extension to second-order schemes [8] has put these methods on a more solid theoreti- 
cal foundation. On the other hand, one-dimensional Rieman solvers are still required, 
although much research is currently devoted to developing truly multi-dimensional 
upwind schemes [9]. The use of limiters with such schemes, which is required in the 
presence of shock waves, has often been found to inhibit convergence to steady-state. 

Higher order schemes have also been investigated by a number of researchers 
(see for example [10,11]). Such schemes offer the possibility of resolving complex 
flows in a more efficient manner using a more accurate (and expensive) representation 
of the data on a smaller number of mesh points. Although few if any such schemes 
are routinely used today, they will probably play an important role in the future for the 
solution of high Reynolds number viscous flows which presently require the use of 
tens of millions of grid points. It is interesting to note that in the structures field, 
unstructured higher order discretizations are the method of choice. 

In the context of unstructured meshes, the increased cost of upwind or higher 
order methods must be weighed against the cost of retaining an inexpensive discretiza- 
tion and making use of adaptive meshing techniques, which constitute one of the main 
advantages of unstructured meshes. The combination of h-refinement (adaptive mesh- 
ing) and P refinement (higher-order methods) should also be further pursued since this 
has been shown to enable exponential convergence [12]. 

3. SOLUTION TECHNIQUES 

Once the governing equations have been discretized in space, they form a large 
set of coupled ordinary differential equations which must be integrated in time. The 
main interest in this paper relates to the solution of steady-state problems. In this case, 
time accuracy of the integration may be sacrificed in the interest of accelerating the 
convergence to steady-state. This may include the use of a low-accuracy time integra- 
tion scheme, the use of large time steps, and lumping of the mass matrix for finite- 
element schemes. Furthermore, many of the convergence acceleration techniques 
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developed for structured meshes carry over in a straight forward manner to unstruc- 
tured meshes. These include the use of local time stepping, enthalpy damping for 
inviscid flows, and implicit residual averaging [13,14] (which must be implemented 
using a Jacobi iteration rather than a tridiagonal solver). 

However, for large problems, the use of simple explicit schemes inevitably results 
in very slow convergence rates. Many of the solution algorithms employed for struc- 
tured grids exploit the structure of the grid (e.g ADI schemes) or the limited 
bandwidth of the resulting Jacobian matrix, and thus are not applicable to unstructured 
meshes. The lack of efficient steady-state solution algorithms for unstructured mesh 
problems has been one of the main impedements towards greater use of unstructured 
mesh strategies. For large stiff problems, implicit methods based on sparse matrix 
technology or multi-level approaches modified for use on unstructured data-sets are 
required. 

The ultimate implicit method is the direct solver, or Newton's method, ff an 
exact linearization of the Jacobian is employed, and the resulting matrix is inverted at 
each time-step using sparse matrix techniques, quadratic convergence can be obtained, 
resulting in convergence to machine zero in under ten iterations. Direct methods have 
been demonstrated for both structured grids and unstructured grids [15,16,17]. 
Although these are among the most robust methods available, their operation count and 
storage requirements for unstructured meshes are non-optimal and are thus seldom 
employed in practice. 

For a second-order method, the exact linearization results in a stencil which 
includes nearest neighbors as well as second to nearest neighbors. Thus, the storage 
requirements for the resulting sparse matrix become excessive, particularly in three 
dimensions. By employing a linearization of the corresponding first-order scheme, a 
nearest neighbor stencil is obtained, and the memory requirements for storing the 
corresponding sparse matrix are reduced substantially. However, this mismatch 
between the implicit and explicit operators ensures that quadratic convergence rates 
cannot be achieved. Furthermore, the exact inversion of the implicit matrix at each 
time-step is no longer necessary, since the implicit matrix itself is an inaccurate 
representation of the explicit operator. Thus, the use of iterative implicit methods, in 
which the implicit system of equations is only approximately solved at each time-step 
is more appropriate. 

A large variety of iterative implicit methods have been developed. These may 
consist of a single iteration scheme, or a preconditioning operation followed for exam- 
ple by a GMRES (generalized minimum residual) technique. These implicit methods 
may be divided into methods which operate pointwise (such as Jacobi and Gauss- 
Siedel methods), and those which require storing the entire implicit matrix (such as LU 
factorization schemes). 

Jacobi and Gauss-Siedel approaches have been employed successfully both as 
iteration schemes and as preconditioners for GMRES [4,7,18,19,20]. Improved 
efficiency over explicit schemes with minimal memory overheads have been demon- 
strated for a variety of problems. However, for large problems and very stiff equation 
sets, such as those encountered in the solution of high Reynolds number viscous flows, 
the local nature of these methods results in a degradation of the convergence rate. 

Methods which operate on the entire implicit matrix such as LU factorization are 
of a more global nature; such methods promote the rapid transmittal of information 
across the entire domain. As such, these methods are more robust and their 
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convergence degrades less significantly for very large and stiff problems. An incom- 
plete LU factorization employed as a preconditioner followed by a GMRES technique 
has been found to yield one of the most competitive solution strategies for high- 
Reynolds number viscous two-dimensional flows [4]. However, such methods require 
the storage of the entire implicit matrix. While this is feasible in two-dimensions, for 
three dimensional calculations this matrix alone requires of the order of 300 N words 
of storage for a vertex scheme, where N represents the number of mesh vertices. 

An interesting alternative approach which is not entirely local, but which obviates 
the need to store the implicit Jacobian matrix is based on the use of additional data- 
structures called linelets or snakes [21,22]. By joining series of neighboring points 
together in the unstructured mesh, a set of lines can be identified and employed to 
mimick the alternating direction implicit (ADI) type algorithms commonly employed 
on structured meshes. Such methods may be viewed as a compromise between the 
low storage requirements of point-wise methods and the global nature of LU factoriza- 
tion methods, and thus their performance can be expected to fall somewhere in this 
region. However, for problems where the stiffness is strongly directional, such as for 
high Reynolds number boundary layers, this approach may be capable of resolving 
much of the stiffness. 

An entirely different approach involves the use of multi-level or multigrid stra- 
tegies. These are hierarchical methods which make use of a sequence of coarser grids 
to accelerate the solution on a fine grid. The advantages of time stepping on coarse 
meshes are twofold: first, the permissible time-step is much larger, since it is propor- 
tional to the cell size, and secondly, the work is much less because of the smaller 
number of grid points. Generally, a simple explicit scheme is employed on each grid 
of the sequence. The process begins by performing a time-step on the finest grid of 
the sequence, and then interpolating the flow variables and residuals up to the next 
coarser grid of the sequence. On this grid, a correction equation is formulated, which 
consists of the governing flow equations augmented by a forcing function which 
represents the fine grid solution. This correction equation is time-stepped and the 
resulting flow variables and residuals are interpolated up to the next coarser grid, 
where the process is repeated recursively until the coarsest grid of the sequence is 
reached. The computed corrections are then recursively interpolated back down to the 
finest grid where they are employed to update the solution. This entire procedure con- 
stitutes one multigrid cycle. These cycles are repeated until convergence is obtained. 

The use of a multigrid method with unstructured meshes presents an additional 
challenge. Consistent coarse tetrahedral grids can no longer be formed by simply 
grouping together neighboring sets of tetrahedra. An alternative would be to generate 
the fine mesh by repeatedly subdividing an initial coarse mesh in some manner. How- 
ever, generally poor topological control of the fine mesh results from such a procedure. 
A strategy which has proven successful involves the use of independent non-nested 
coarse and fine grids. This approach provides great flexibility in determining the 
configuration of the coarsest and finest meshes. Coarse meshes may be designed to 
optimize the speed of convergence, whereas fine meshes may be constructed based on 
solution accuracy considerations. In general, beginning from a fine grid, a coarser 
level is constructed which contains roughly half the resolution in each coordinate 
direction throughout the domain (about 1/8 the number of vertices in three dimensions, 
or 1/4 in two dimensions). This process is repeated until the coarsest grid capable of 
representing the geometry topology is obtained. In the context of adaptive meshing, 
new finer meshes may be added to the multigrid sequence, using any given adaptive 
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refinement technique, since no relation is assumed between the various meshes of the 
sequence. The key to the success of such a strategy lies in the ability to efficiently 
transfer variables, residuals and corrections back and forth between unrelated unstruc- 
tured meshes. This may be performed using linear interpolation. For each vertex of a 
given grid, the tetrahedron which contains this vertex on the grid to which variables 
are to be interpolated is determined. The variable at this node is then linearly distri- 
buted to the four vertices of the enclosing tetrahedron (three vertices of the enclosing 
triangle in two dimensions). The main difficulty lies in efficiently determining the 
enclosing cell for each grid point. A naive search over all cells would lead to an O(N z) 
complexity algorithm, where N is the total number of grid points, and would be more 
expensive than the flow solution itself. Thus, an efficient search strategy such as a 
graph-traversal algorithm or a quad-tree approach is required. 

This particular unstructured multigrid approach has been shown to be very 
effective [3,23,24,25]. Near grid independent convergence rates can be obtained while 
incurring minimal memory overheads. However, the need to manually generate a 
complete sequence of grids is viewed as tedious in a production environment, and 
several efforts at automating this process have been developed. On approach 
agglomerates or fuses together neighboring cells to form coarse super-cells which are 
generally not tetrahedral but polyhedral [26,27]. A second approach constructs tri- 
angular or tetrahedral grids by filtering a portion of the fine grid points and retriangu- 
lating the remaining points [28,29]. All of these approaches involve various tradeoffs. 
However, they all make use o f  extra geometrical constructs (i.e. coarse grids) to solve 
what is essentially an algebraic matrix inversion problem. This may be viewed as an 
inconvenience. However, unstructured multigrid methods are probably the most 
efficient solution methods available presently in terms of CPU and memory overhead 
for steady-state solutions. 

4. GRID GENERATION AND ADAPTIVITY 

Although one of the main motivations for the use of unstructured meshes has 
been the added flexibility they offer for dealing with complex geometries, grid genera- 
tion remains a pacing item for unstructured mesh computations, especially in three 
dimensions. To be sure, part of the problem is associated with the lack of standard 
and flexible geometry definition standards and interfaces to current CAD systems 
employed in the industrial design process. However, much difficulty still rests with 
the grid generation algorithms themselves. 

Unstructured mesh generation algorithms have traditionally been divided into 
advancing front type methods, and Delaunay triangulation methods, although this 
classification is somewhat arbitrary. In fact, these two approaches are not mutually 
exclusive. The advancing front algorithm begins with a surface mesh on the geometry 
which it then marches out into the flow field by adding points ahead of the front and 
joining them up to form tetrahedra with existing front faces, until the entire region has 
been discretized [30,31]. This algorithm essentially represents a point placement stra- 
tegy. The reconnection strategy employed to form tetrahedral elements is somewhat 
arbitrary and resorts to checking the validity of each proposed tetrahedral cell by exa- 
mining possible intersections with neighboring cells. The advantages of such a method 
are that it guarantees the integrity of the boundaries. This is evident since the geometry 
surface-grid constitutes the original front, and the method is of the "greedy type"; i.e. 
it never undoes what has already been constructed. The resulting placement of the 
mesh points is generally very satisfactory and very smooth element variations can be 
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ensured. On the other hand, robustness is not guaranteed, due to the somewhat heuris- 
tic nature of the reconnection strategy. Sophisticated dynamically varying data- 
structures are required to accelerate the spatial searching routines employed in such an 
approach. 

A Delaunay triangulation represents one of the most fundamental data-structures 
in computational geometry [32]. Given a set of points in a three dimensional volume 
(or in a two dimensional plane), the Delaunay triangulation of these points constitutes 
a set of non-overlapping tetrahedra (or triangles in 2-D), the union of which define the 
convex hull of the points, and for which a number of properties can be proved. Vari- 
ous algorithms exist for constructing the Delaunay triangulation [33]. A commonly 
employed algorithm in the mesh generation context, known as Bowyer's [34] or 
Watson's [35] algorithm, is based on the empty circumsphere criterion. This property 
states that the circumsphere of any tetrahedron cannot contain any other vertices of the 
mesh. Thus, if an initial triangulation is assumed to exist, new mesh points can be 
introduced one at a time and triangulated into the mesh by first locating all tetrahedra 
whose circumsphere is intersected by the newly introduced point, removing all such 
elements, and forming new tetrahedra by joining the new point up to the faces of the 
cavity which was created by the removal of the intersected elements. 

Since proofs exist for the validity of Delaunay triangulation algorithms, robust- 
ness can potentially be built into a mesh generator by making use of such algorithms. 
However, the Delaunay triangulation is only valid within the convex hull of its 
defining points. Thus for geometries other than the convex hull, such as a body 
inside a flowfield, the integrity of the geometry cannot be guaranteed. One approach 
to this problem is to triangulate the entire set of mesh points, and then to attempt to 
reconstruct a prescribed surface grid on the geometry by swapping edges and faces of 
the mesh [36]. Another approach ensures that the placement of points in the mesh is 
such that the geometry integrity is observed [37]. 

Since a Delaunay triangulation merely describes a connectivity pattern for a set of 
points, arbitrary point placement strategies can be employed. In general, the point 
placement strategies employed are somewhat heuristic. Point sets may be pre- 
determined by sets of overlapping structured grids, or generated incrementally by sub- 
dividing elements deemed to be too large [38]. These strategies have generally 
resulted in less than optimal point distributions, and the resulting meshes are generally 
less smooth than those obtained with the advancing front method. 

On the other hand, Delaunay triangulation mesh generation strategies based on 
Bowyer's algorithm have proved to be extremely efficient and rather simple to imple- 
ment. They obviate the need for the complex data-structures required in the advancing 
front technique, and do not perform tedious intersection checking. Perhaps an addi- 
tional reason for such efficiency is the fact that Bowyer type algorithms generate the 
mesh one point at a time, whereas advancing front type algorithms proceed one 
tetrahedron at a time, and a typical unstructured mesh contains 5 to 6 times more 
tetrahedra than vertices. 

As mentioned previously, adaptive meshing represents one of the principal advan- 
tages of the use of unstructured meshes. Similarly to the original mesh generation pro- 
cess, mesh adaptation requires the introduction (or removal) of new points at appropri- 
ate locations, and the reconnection of these points to neighboring points of the mesh. 
The simplest implementation of adaptive mesh refinement is to subdivide existing 
tetrahedra into smaller cells by introducing new points midway along the tetrahedra 
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forming edges, and reconnecting these points according to a predetermined set of rules. 
This strategy is very efficient and simple to implement but can lead to distorted ceils 
and vertices of very high degree after numerous refinement levels. 

Bowyer's algorithm for Delaunay triangulation is ideally suited for adaptive 
meshing. Assuming the flow has been solved on a mesh which constitutes a Delaunay 
triangulation, the solution can be examined to determine regions of high discretization 
errors or large flow gradients where additional grid points are required. Each new grid 
point is then inserted into the mesh and locally retriangulated using Bowyer's algo- 
rithm, thus resulting in the Delaunay triangulation of the new augmented point set. 

The advancing front technique makes use of a field function for determining the 
desired size of the mesh elements throughout the flow field. A simple adaptive 
remeshing strategy consists of replacing this initial field function by a function derived 
from the computed flow solution, and completely regenerating the entire mesh. This 
approach contains more flexibility for generating the new adaptive mesh, but is more 
expensive since a non-local mesh restructuring is performed, and may be impractical 
for transient type problems where many remeshings are required. Alternatively, indivi- 
dual regions of the mesh can be cut out, thereby defining new fronts to be advanced, 
and local mesh patches regenerated. (For an implementation of this procedure for the 
removal of distorted elements see [39]). 

The main issue which needs to be addressed for all mesh generation and adapta- 
tion strategies is that of robustness. This can only be achieved through less heuristic 
and more theoretically sound approaches to the problem. New developments in com- 
putational geometry should enable the formulation of fool-proof algorithms. For 
example, the existence and construction methods for a constrained Delaunay triangula- 
tion in an arbitrary non-convex two-dimensional domain are now well known [40]. A 
constrained Delaunay triangulation is one which contains certain predefined edges in 
the final triangulation. Thus, the triangulation of a given set of points in an arbitrary 
two-dimensional domain with initial geometry boundaries is a relatively easily solved 
problem. What is required is the extension of such proofs to three dimensions, as well 
as solutions to various optimization problems, such as: what is the optimal distribution 
of points ? the optimal triangulation of these points (it need not necessarily be a 
Delaunay triangulation)? how does such a triangulation interact with the solver? and 
how can one construct such a triangulation in an efficient and rigorous manner? 

These issues become even more important for the solution of high-Reynolds 
number viscous flows. In three dimensions, few if any practical high-Reynolds 
number viscous flow solutions have been demonstrated. In two-dimensions, turbulent 
viscous flow solution capabilities have only emerged in the last several years. Aside 
from the turbulence modeling issues, which will be described in the results section of 
this paper, the main difficulty for solving such flows on unstructured meshes relates to 
the requirement of generating very highly stretched triangular cells (or tetrahedral ele- 
ments in three dimensions) which are required in order to efficiently resolve the thin 
shear layers which occur in such flows. This represents a somewhat non-standard 
application of unstructured meshes, since highly stretched triangular elements have 
traditionally been considered detrimental to numerical accuracy, and as such have been 
avoided. However, it has been shown that, while triangular elements with one large 
angle (- 180 degrees) are detrimental, elements with small angles, such as a highly 
elongated right angle triangle are acceptable [41]. This interplay between numerical 
behavior and optimal triangulation (for a given numerical method) is important for 
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accurately and efficiently resolving complex flows, and should increasingly result in a 
tighter coupling between the grid generation and flow solution processes. 

The current method employed by the author for generating highly stretched two- 
dimensional triangulations consists of constructing a Delaunay triangulation of the set 
of grid points in a mapped space rather than in physical space [42,43]. The set of grid 
points is determined by generating a stretched structured grid over each individual 
component of the geometry and considering the union of the points defined by these 
overlapping grids. The locally mapped space is defined by the amount of local grid 
stretching desired, which in turn is dictated by the aspect ratios of the underlying 
structured grid cells. In this mapped space, the mesh points appear locally isotropic, 
and a regular Delaunay triangulation is constructed. The projection of this triangula- 
tion back into the physical space produces the desired stretching. Although this 
method does not guarantee the formation of non-obtuse triangles, the combination of 
the particular point distribution and reconnection strategy tends to produce nearly 
right-angle triangles in regions of high stretching. 

Improvements to this strategy can be sought by drawing on more rigorous compu- 
tational geometry algorithms which provide bounds on the angles of the generated tri- 
angles, or combined with point placement optimization techniques. These techniques 
will become necessary for the generation of suitable stretched meshes in three dimen- 
sions for viscous flow calculations. 

Another alternative to the generation of highly stretched triangular or tetrahedral 
meshes for the resolution of viscous flows is the use of hybrid meshes, where a thin 
layer of quadrilaterals in two-dimensions, or prizms in three-dimensions [44,45] are 
employed in the boundary layer regions. These methods by-pass the difficulties associ- 
ated with the generation and solution of flows on highly stretched triangular and 
tetrahedral elements. On the other hand, the resulting grid becomes structured in one 
of the directions, and part of the generality of the unstructured approach is lost. Such 
trade-offs must of course be weighed in terms of the complexity of the geometry. 

5. TWO-DIMENSIONAL RESULTS 

5.1. An Inviscid Case 

In order to demonstrate the potential effectiveness of an unstructured mesh stra- 
tegy, the solution of a steady-state inviscid internal flow, which incorporates adaptive 
meshing in conjunction with an unstructured multigrid algorithm is demonstrated. The 
basic discretization employed consists of a Galerldn finite-element approach with 
added artificial dissipation. The unstructured multigrid scheme makes use of a 
sequence of pre-generated unrelated coarse meshes, and mesh adaptation is achieved 
by introducing new points in regions of high density gradients and restructuring the 
mesh locally using Bowyer's algorithm. 

The geometry consists of a two-dimensional turbine blade cascade which has 
been the subject of an experimental and computational investigation at the occasion of 
a VKI lecture series [46]. A total of seven meshes were used in the multigrid algo- 
rithm, with the last three meshes generated adaptively. The coarsest mesh of the 
sequence contains only 51 points, while the finest mesh, depicted in Figure 1, contains 
9362 points. Extensive mesh refinement can be seen to occur in the neighborhood of 
shocks, and in other regions of high gradients. The inlet flow incidence is 30 degrees, 
and the average inlet Mach number is 0.27. The flow is turned 96 degrees by the 
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blades, and the average exit isentropic Mach number is 1.3. At these conditions, the 
flow becomes supersonic as it passes through the cascade, and a complex oblique 
shock wave pattern is formed. These are evident from the computed Mach contours 
depicted in Figure 2. All shocks are well resolved, including some of the weaker 
reflected shocks, which non-adapted mesh computations often have difficulty resolving. 
Details of the flow in the rounded trailing edge region of the blade, where the flow 
separates inviscidly and forms a small recirculation region, are also well reproduced. 
Once the first four globally generated meshes were constructed, the entire flow solution 
- adaptive mesh enrichment cycle was performed three times, executing 25 multigrid 
cycles at each stage. This entire operation required 40 CPU seconds on a single pro- 
cessor of a Cray-YMP supercomputer. The residuals on the finest mesh were reduced 
by two and a half orders of magnitude, which should be adequate for engineering cal- 
culations. 

5.2. Viscous Flows 

The main difficulties involved in computing high-Reynolds-number viscous flows 
relate to the grid generation and turbulence modeling requirements. Since the grid gen- 
eration issues have been previously discussed, the turbulence modeling issues will be 
briefly addressed in this section. 

The most common turbulence models employed for aerodynamic flows are of the 
algebraic type. Such models typically require information concerning the distance of 
each point from the wall. Turbulence length scales are determined by scanning 
appropriate flow variables along specified streamwise stations. In the context of 
unstructured meshes, such information is not readily available and hence, the imple- 
mentation of algebraic turbulence models on such meshes introduces additional com- 
plexities. A particular approach adopted by the author [47] consists of generating a set 
of background turbulence mesh stations. These are constructed by generating a hyper- 
bolic structured mesh about each geometry component, based on the boundary-point 
distribution of the original unstructured mesh, and extracting the normal lines of the 
mesh. When performing adaptive meshing, new turbulence mesh stations must be con- 
structed for each new adaptively generated boundary point, as illustrated in Figure 3. 
Each time the turbulence model is executed, the flow variables are interpolated onto 
the normal turbulence stations, the turbulence model is executed on each station, and 
the resulting eddy viscosity is interpolated back to the unstructured mesh. The method 
employed for interpolating variables back and forth between the unstructured mesh and 
the turbulence mesh stations is similar to that previously described for the unstructured 
multigrid algorithm. 

Figures 4 through 7 illustrate a calculation which makes use of these various 
techniques to compute a complicated two-dimensional viscous flow over a high-lift 
multi-element airfoil. The final mesh employed is depicted in Figure 4, and contains a 
total of 48,691 points. This mesh was obtained using the stretched Delaunay triangula- 
tion technique previously described, followed by two levels of adaptive refinement. 
The height of the smallest cells at the wall is of the order of 2 x 10 -5 chords and cell 
aspect ratios up to 500:1 are observed. The computed Mach number contours for this 
case are depicted in Figure 5. The freestream Mach number is 0.1995, the chord Rey- 
nolds number is 1.187 million, and the corrected incidence is 16.02 degrees. At these 
conditions, the flow remains entirely subcritical. Compressibility effects are neverthe- 
less important due to the large suction peaks generated about each airfoil. For example, 
in the suction peak on the upper surface of the leading-edge slat, the local Mach 
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number achieves a value of 0.77. The computed surface pressure coefficients are com- 
pared with experimental wind tunnel data [48] in Figure 6, and good overall agreement 
is observed, including the prediction of the height of the suction peaks. This case pro- 
vides a good illustration of the importance of adaptive meshing in practical aero- 
dynamic calculations. Adequate resolution of the strong suction peak on the upper sur- 
face of the slat can only be achieved with a very fine mesh resolution in this region. 
Failure to adequately capture this large suction peak results in the generation of numer- 
ical entropy which is then convected downstream, thus contaminating the solution in 
the downstream regions, and degenerating the global accuracy of the solution. Because 
these suction peaks are very localized, they are efficiently resolved with adaptive tech- 
niques. In order to obtain a similar resolution using global mesh refinement, of the 
order of 200,000 mesh points would be required, greatly increasing the cost of the 
computation. The convergence history for this case, as measured by the density resi- 
duals and the total lift coefficient versus the number of multigrid cycles, is depicted in 
Figure 7. A total of 400 multigrid cycles were executed, which required roughly 35 
minutes of single processor CRAY-YMP time, and 14 Mwords of memory. 

The discrepancy between the computed and experimental pressure coefficients on 
the trailing edge flap is due to a separated flow condition which is not reproduced by 
the algebraic turbulence model. These results strongly indicate the need for more 
sophisticated turbulence modeling. The use of single or multiple field-equation models 
appears to be the most appropriate choice for turbulent unstructured mesh computa- 
tions. Such models can be discretized in a straight-forward manner on unstructured 
meshes. However, the task is now to ensure that such models adequately represent the 
flow physics, and that they can be solved in an efficient and robust manner. The imple- 
mentation of a standard high-Reynolds-number k -  e turbulence model with low- 
Reynolds-number modifications proposed by Speziale, Abid and Aladerson [49], is 
demonstrated in the next example. The main effort was focused on devising a tech- 
nique for efficiently solving the two turbulence equations in the context of the unstruc- 
tured multigrid strategy [50]. The four flow equations and the two turbulence equations 
are solved as a loosely coupled system. The flow equations are solved explicitly, and 
the turbulence equations point-implicitly, using a time-step limit which ensures stabil- 
ity and positivity of k and e. In the context of the unstructured multigrid algorithm, the 
turbulence eddy viscosity is assumed constant on all but the finest grid level where it 
is recomputed at each time-step. The transonic flow over a two-element airfoil 
configuration has been computed using this implementation of the model. For this 
case, the freestream Mach number is 0.5, the incidence is 7.5 degrees, and the Rey- 
nolds number is 4.5 million. Figures 8 and 9 depict the mesh and the solution 
obtained with the k - e turbulence model. Four meshes were employed in the multigrid 
sequence, with the finest mesh containing a total of 28,871 points. The convergence 
rates of the various equations for this case are plotted in Figure 10. As can be seen, 
the turbulence equations and flow equations converge at approximately the same rates. 
All flow variables and turbulence quantities are initialized with freestream values, and 
convergence to steady-state is achieved in several hundred multigrid cycles. The com- 
puted flow field exhibits regions of transonic flow with a small region of separated 
flow at the foot of the shock. These features are well reproduced by the turbulence 
model. Future efforts should concentrate on computationally predicting flows with 
large regions of separation, such as that inferred by Figure 6, and on developing 
models which better represent the flow physics. 
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6. THREE DIMENSIONAL RESULTS 

Due to the limitations of present day supercomputers, and the difficulties associ- 
ated with generating highly stretched tetrahedral meshes, three-dimensional computa- 
tions have generally been confined to inviscid flows. Most of the techniques described 
in the context of two-dimensional inviscid flows extend readily to three dimensions. 
In particular, the unstructured multigrid algorithm and the adaptive meshing strategy 
have been found to be particular effective for three-dimensional computations [23]. As 
an example, an adaptive multigfid calculation of transonic flow about an ONERA M6 
wing is illustrated in Figures 11 through 13. The final mesh, depicted in Figure 11, 
contains a total of 174,412 points and just over 1 million tetrahedral volumes. This 
represents the fourth mesh in the multigrid sequence and the second adaptive 
refinement level. Mesh refinement was based on the undivided gradient of density. 
The freestream Mach number and incidence for this case are 0.84 and 3.06 degrees 
respectively. The well known double shock pattern for this case is reproduced in the 
computed Much contours of the solution in Figure 12. The leading edge expansion and 
shocks are well resolved due to the extensive mesh refinement in these regions. A glo- 
bally refined mesh of this resolution would result in roughly 600,000 points and would 
thus require 3 to 4 times more computational resources. The multigrid convergence 
rate for this case is depicted in Figure 13, where 50 cycles were performed on the ori- 
ginal grid, prior to adaptation, 50 cycles on the first adapted mesh, and 100 cycles on 
the finest adapted mesh. On this final mesh, the residuals were reduced by 5 orders of 
magnitude over 100 cycles, requiring a total of 35 CRAY-YMP single CPU minutes 
and 22 MW of memory. 

6.1. Parallel Computing Results 

As mentioned previously, due to their homogeneous (although random) nature, 
unstructured mesh data-sets are particularly well suited for parallel processing. An 
unstructured mesh solver typically consists of a single (indirect addressed) loop over 
all interior mesh edges, and another similar loop over all boundary elements. On a 
vector machine, each loop may be split into groups (colors) such that within each 
group, no recurrences occur. Each group can then be vectorized. A simple paralleliza- 
tion strategy for a shared memory machine is to further split each group into n sub- 
groups, where n is the number of available processors. Each subgroup can then be vec- 
torized and run in parallel on its associated processor. Because the original number of 
groups is not large (usually 20 to 30), the vector lengths within each subgroup are still 
long enough to obtain the full vector speedup of the machine, for a moderate number 
of processors. For more massively parallel distributed-memory scalar machines, the 
entire mesh must be subdivided and each resulting partition associated with a single 
processor. On each processor, the single scalar interior and boundary loops are then 
executed, with inter-processor communication occurring at the beginning and end of 
each loop. The mesh partitioning strategy must ensure good load balancing on all pro- 
cessors while minimizing the amount of inter-processor communication required. 

6.2. CRAY-YMP-8 Results 

Figure 14 illustrates an unstructured mesh generated over a three-dimensional air- 
craft configuration. This mesh contains a total of 106,064 points and 575,986 tetrahe- 
dra. This represents the Second finest mesh employed in the multigrid sequence. The 
finest mesh, which is not shown due to printing resolution limitations, contains a total 
of 804,056 points and approximately 4.5 million tetrahedra. This is believed to be the 
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largest unstructured grid problem attempted to date. The inviscid flow was solved on 
this mesh using all eight processors running in parallel on the CRAY-YMP supercom- 
puter. A total of 4 meshes were used in the multigrid sequence. The convergence rate 
for this case is depicted in Figure 16. In 100 multigrid cycles, the residuals were 
reduced by almost 6 orders of magnitude. This run required a total of 16 minutes wall 
clock time running in dedicated mode on the 8 processor CRAY-YMP, including the 
time to read in all the grid files, write out the solution, and monitor the convergence 
by summing and printing out the average residual throughout the flow field at each 
multigrid cycle. The total memory requirements for this job were 94 million words. 
The ratio of CPU time to wall clock time was 7.7 on 8 processors, and the average 
speed of calculation was 750 Mflops, as measured by the CRAY hardware perfor- 
mance monitor [51]. For this case, the freestream Mach number is 0.768 and the 
incidence is 1.116 degrees. The computed Mach contours are shown in Figure 15, 
where good resolution of the shock on the wing is observed, due to the large number 
of mesh points employed. 

6.3. Intel Touchstone Delta Results 

The implementation of the unstructured multigrid Euler solver on the Intel Touch- 
stone Delta distributed memory scalar multiprocessor machine, has been pursued using 
a set of software primitives designed to ease the porting of scientific codes to parallel 
machines [52]. The present implementation was undertaken as part of a more general 
project aimed at designing and constructing such primitives with experience gained 
from various implementations. The net effect of the use of such primitives is to relieve 
the programmer of most of the low level machine dependent software programming 
tasks. The mesh was partitioned using a spectral partioning algorithm which had previ- 
ously been shown to produce good load balancing and minimize inter-processor com- 
munication [53]. The flow over the aircraft configuration previously described using 
the 804,056 vertex mesh was recomputed on the Intel Touchstone Delta machine using 
both an explicit single grid unstructured euler solver, and the unstructured multigrid 
euler solver. The single grid solver achieved a computational rate of 1.5 gigaflops on 
512 processors, whereas the multigrid solver, using a V-cycle strategy achieved a rate 
of 1.2 gigaflops on the same number of processors. This represents a computational 
efficiency of 50% to 60%. These numbers are based on a single processor speed of 
approximately 5 Mflops, which corresponds to the computational rate achieved for a 
series of small meshes which were run on a single processor. The computational 
efficiencies are seen to vary with the particular solution strategy employed, and were 
also observed to vary with the size of the mesh. On the other hand, the CRAY-YMP- 
8 results were found to be relatively insensitive to the solution algorithm or the prob- 
lem size. This is presumably due to the large bandwidth and shared-memory architec- 
ture of the machine. However, on the Intel Touchstone Delta, the multigrid strategy is 
still the method of choice, since in spite of its slightly lower computational efficiency, 
the numerical efficiency (convergence rate) achieved by this approach is approximately 
an order of magnitude greater than that of the simple single-grid explicit scheme. For 
this case, convergence to steady-state could be achieved in approximately 10 minutes 
of wall clock time using 512 processors. 
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7. CONCLUSION 

This paper has illustrated the application of unstructured mesh techniques to vari- 
ous types of aerodynamic flows, and emphasized the advantages which can be obtained 
for complex geometries using adaptive meshing and parallelization. In two dimensions, 
a viscous flow solution capability has been demonstrated, while in three dimensions, 
efficient Euler solutions are possible. The main problems associated with three- 
dimensional viscous solutions are related to the development of reliable grid generation 
strategies, particularly with regards to the generation of highly stretched tetrahedral 
elements for capturing thin viscous layers. Turbulence modeling is also a limiting fac- 
tor, although this difficulty is not particular to the field of unstructured meshes. Future 
work should also concentrate on more complete parallelization of the entire solution 
process, including items such as grid generation, partitioning, and adaptive meshing. 
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Figure i: Adaptive Mesh Employed for Computing Tran- 
sonic Inviscid Flow Through a Periodic Turbine Blade Cas- 
cade Geometry; Number of Nodes = 9362 

Figure 2: Compntexl Mach Contours for Flow Through a 
Periodic Turbine Blade Cascade Geometry 

Figure 3: Illustration of Turbulence Mesh Stations Employed 
in Algebraic Model for an Adaptively Generated Mesh 
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Figure 4: Adaptively Generated Unstructured Mesh about 
Four-Element Airfoil; Number of Nodes = 48,691 
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Figure 6: Comparison of Comput~'.d Surface Pressure Distri- 
bution with Experimental Wind-Tunnel Data for Flow Over 
Four-Element Airfoil Configuration; Math = 0.1995, Rey- 
nolds Number = 1.187 million, Incidence = 16.02 degrees 

Figure 5: Computext Math Contours for Flow over Four- I"igore 7: Convergence as Measured by the Computed Lift 
Element Airfoil; Mach = 0.1995, Reynolds Number = 1.187 Coefficient and the Density Residuals Versus the Number of 
million, Incidence = 16.02 degrees Multigrid Cycles for Flow Past a Four-Element Airfoil 
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Figure 8: Global View of Coarse Unstructured Mesh and 
Close-Up View of Fine Unstructured Mesh Employed for 
Computing Flow Past a Two-Element Airfoil (Coarse Mesh 
Points = 7272, Fine Mesh Points = 28871) 

Figure 9: Computed Macfi Contours Using Low-Reynolds 
Number Modification for Turbulence Equations for Supercrit- 
ical Flow over a Two-Element Airfoil (Mach = 0.5, Re = 4.5 
million, Incidence = 7.5 degrees) 
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Figure 10: Multigrid Convergence Rate of the Density Equa- 
tion and the Two Turbulence Equations Using Low-Reynolds 
Number Modifications for Flow Over Two-Element Airfoil 
(Mach = 0.5, Re = 4.5 million, Incidence = 7.5 degrees) 
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Figure I I: Finest Adapted Mesh Generated Abou! ONERA 
M6 Wing (Number of Nodes = 173,412 Number of 
Tetrahedra = 1,013,718) 

Figure 14: Coarse Unstructured Mesh about an Aircraft 
Coafignration with Single Nacelle; Number of Points = 
1(16,064, Number of Tetrabedra = 575,986 (Finest Mesh Not 
Shown) 

Figure 12: Computcd Math Conlours on |he Adaptively 
Generated IVlesh About the ONERA M6 Wing (Maeh = (I,84. 
Incidence = 3.06 degrees) 

Figure 15: Math Contours for Flow over Aircraft 
Configuration Computed oa Fine Mesh of g04,056 Vertices 
and 4.5 million Tetrahedra (Mach = 0.768, Incidence = I.116 
degrees) 
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Figure 13; Convergence Rate of the Unstructured Multigrid 
Algorithm oil the Adaptively Generated Sequence of Meshes 
about the ONERA M6 Wing as Measured by file Average 
Density Residuals Versus the Number of Multigrid Cycles 
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Figure 16: Multigrid Convergence Rate on Finest Mesh of 
the Multigrid Sequeace for Transonic Flow over Aircraft- 
with-Nacelle Conliguratioa 
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FLUID FLOW VISUALIZATION: 
RECENT DEVELOPMENTS AND FUTURE DIRECTIONS 

D.E. Edwards 

United Technologies Research Center 
East Hartford, Connecticut 06108 

Abstract 

Visualization is playing an important role in the various stages of a computational simulation. 
The goal in using visualization is to assist existing scientific procedures by providing new insight 
through visual representation. Trends in scientific visualization will depend on advancements in 
computer hardware as well as trends in engineering disciplines such as CFD. Current trends in 
visualization include application of advanced visualization techniques, data management, data 
compression, feature extraction, graphical user-interfaces, migration to low-end systems, network 
computing, portability and visual programming environments. Future directions for visualization 
will be in the areas of virtual reality, automated feature identification and visual languages. 

1 Introduction 

AS we enter the 1990's, the scientific community has witnessed a tremendous growth and 
availability of large scale computing in the engineering sciences. Many of today's advanced 
computer simulations create results containing billions of pieces of information. The sheer size 
of this amount of data results in an exceedingly difficult and time consuming process to 
interrogate and interpret the information and knowledge contained within the scientific data. This 
problem was recognized in a 1987 report of the ACM SIGGRAPH Panel on Graphics, Image 
Processing and Workstations [27], submitted to the National Science Foundation. The report 
described the need for advanced visualization technology to assist the scientist in the analysis 
of technical data. Visualization is used to probe the data to locate and identify physical 
phenomena or to identify limitations in the data creation process. 

The term Scientific Visualization is used to describe the application of modern interactive 
computer graphics in the analysis of scientific data. It transforms the symbolic representation 
(number) into the geometric (image), enabling researchers to observe their simulations. The field 
of scientific visualization encompasses and unifies the fields of computer graphics, image 
processing, computer vision, computer-aided design, signal processing and user-interfaces. The 
goal in using visualization is to assist existing scientific procedures by providing new insight 
through visual representation. 

Progress was made during the 1980's in developing scientific visualization procedures for the 
field of Computational Fluid Dynamics (CFD). The NASA Ames Workstation Application Office 
developed several visualization tools (PLOT3D [8], SURF [29], RIP [32], GAS [30]) for examining 
two- and three-dimensional, steady (time independent) or unsteady (time dependent) fluid 
dynamic data. In addition, two commercial software companies, Intelligent Light and Wavefront, 
developed generalized animation turnkey packages that can be used to visualize fluid dynamic 
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data [12,13,16]. The software tools described above had two major limitations. The first limitation 
was that these tools were difficult to use without specific training. The person using these tools 
required a detailed understanding of computer graphics. The second limitation was that the 
process to create the visualization was slow, requiring a substantial amount of user time. 

Several efforts are underway to develop systems that attempt to address the limitations of the 
earlier visualization systems. These systems include NASA Ames' FAST [3], MIT's VISUAL3 
[15,17,18], Intelligent Light's FIELDVIEW [22,23], Wavefront's Data Visualizer [5] and AVS Inc.'s 
(formerly Stardent) AVS [35]. These systems take advantage of the increase in computational and 
graphics performance in new computer hardware. 

This paper describes recent developments and current trends occurring in the field of 
scientific visualization for fluid dynamic applications. The software tools mentioned above will be 
discussed with an indication of how these tools are addressing the current trends. Future 
directions for areas of research in scientific visualization will also be discussed. 

2 Recent Developments and Current Trends 

Current trends in scientific visualization are dependent on trends in computer hardware. In the 
past five years there have been significant improvements in workstation computer hardware that 
have resulted in computational performance increasing by a factor of two every 12-18 months. As 
we move into the 1990's, the distinction between the different workstations and even between 
workstations and PCs will blur. Originally the differences were defined by display 
resolution, performance, memory, operating system and price. Relative rather than absolute 
performance and price range will differentiate low-, medium- and high-end workstations and PCs. 
The absolute performance of the high-end workstations of today will become the absolute 
performance of midrange workstations in 18 months and the absolute performance of low-end 
workstations in about three years. The same type of migration for computer graphics 
performance will occur but on a longer cycle, perhaps every 24-30 months [26]. This indicates 
that computational procedures currently on high-end workstations can be migrated to low-end 
systems within three years. It also indicates that a significantly larger number of end-users on low- 
end systems will utilize these procedures. In addition, high-speed fiber-optic networks, with 
bandwidths two orders of magnitude higher than today's Ethernet networks, will be available in 
the next several years. 

Trends in scientific visualization are also dependent on the engineering discipline (in this case, 
CFD) where the technology is being applied. Research in CFD is currently focused on the 
investigation of three-dimensional, time-dependent analyses of complex configurations. An 
example of this is shown in the work of Dorney [10] who has examined the effect of hot streaks in 
a 3D rotor-stator interaction (temperature field is shown in Fig. 1) using the time-dependent 
Reynolds averaged Navier Stokes equations. The 3D simulation consisted of approximately 
410,000 grid points, 14,000 time steps (2,000 time steps per cycle) and required 420 hours of 
CPU time on a Cray 2 supercomputer to obtain a converged solution. 

The grid that will make up the volume in the CFD simulations in the 1990's will be either multi- 
blocked structured, unstructured or a combination of the two. Between one and ten million node 
points will be used in the simulation; if the problem being analyzed is unsteady, thousands of 
time steps can be required. For example, a million node point problem with 10 pieces of 
information at each node and 1000 time steps results in a data set containing 10 gigawords. 
Scientific visualization will be essential in analyzing these large CFD simulations. Visualization 
techniques as shown in Fig. 2 can be applied in the different stages of a computational simulation 
including pre-processing (grid generation), solvers and post-processing (examination of fluid flow 
results). 

When considering the current trends in visualization, one must also examine the state-of-the- 
art visualization techniques presently available. The following software was reviewed: FAST (Fig. 
3), VISUAL3 (Fig. 4) FIELDV1EW (Fig. 5), Data Visualizer (Fig. 6) and AVS (Fig. 7). For 
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completeness, a brief description of each of these visualization software environments is given in 
the Appendix. 

~ ~ ~  Process. or 
Simulation 

r Visualization Intensive r 
[ Interrogation & Interpretation" J 

I Presentati°n l 

Fig. 2. Scientific Visualization in a Computational Simulation 

Given the above information, I see the following trends for scientific visualization for CFD: 

• A d v a n c e d  V i s u a l i z a t i o n  T e c h n i q u e s  - computer graphics procedures such as animation, 
hidden surface, light sources, transparency, and shading models will be utilized in the display 
of scalar and vector fields. Stereographics will also be applied. 

• D a t a  M a n a g e m e n t  - procedures will be developed to efficiently access volumetric 
(unstructured or structured) time dependent data. 

• D a t a  C o m p r e s s i o n  - procedures to compress volumetric data will be developed. Techniques 
may consist of subsampling of data, removing redundant data or using analytical 
representations of the volume. For example, wavelet theory is used in data compression of 
visual images. 

• F e a t u r e  E x t r a c t i o n  - improved techniques to extract information from volume of data in terms 
of contours, contour lines, vectors, iso-surfaces, streaklines, streamlines, particle paths and 
cutting planes. Procedures will be develop for 3D and 4D data. 

• G r a p h i c a l  U s e r - I n t e r f a c e  (GUI) - interactive graphical user-interfaces which are easy to 
learn and use are being developed. Designers work with end-users to determine functionality 
of interface. 

• M i g r a t i o n  to  L o w - E n d  S y s t e m s  - visualization procedures that are currently available on 
high-end graphic workstations will be ported to low-end workstations, PCs and X-Terminals. 

• N e t w o r k  C o m p u t i n g  - procedures will be developed to distribute scientific visualization 
analysis over a network of PCs, workstations, mini-supercomputers and supercomputers. 

• Portability - visualization procedures will be developed to be portable over a range of UNIX 
based workstations using X-Windowing system and a standard graphics library (PEX, 
PHIGS, GL). 

• V i s u a l  P r o g r a m m i n g  E n v i r o n m e n t s  - visual programming environments will be applied by 
software developers to design visualization applications. 
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Data 
TREND FAST VISUAL3 FIELDViEW Visualizer AVS 

Advanced 
Visualization Yes Yes Yes Yes Yes 
Techniques 

Data No No No No No 
Management 

Data No No No No No 
Compression 

Feature Yes Yes Yes Yes Yes 
Extraction 

Graphical Yes No Yes Yes Yes 
User-Interface 

Migration to No No Yes Yes Yes 
Low-End 

Network Yes No No No Yes 
Computing 

Portability No Yes Yes Yes Yes 

Visual 
Programming No No No No Yes 
Environment 

Table I - Current trends in scientific visualization, 

Table 1 shows that none of the visualization software reviewed in this paper address all the 
trends listed above. Current procedures are not addressing data management. With the trend in 
CFD to perform large scale simulations resulting in gigawords of information, managing the data is 
becoming extremely important. In addition to data management, these large scale simulations will 
also require the scientific visualization community to examine data compression techniques. While 
techniques exists in visualization procedures today to subsample the data in a crude fashion (for 
example, taking every other point in each direction in a structured grid) more sophisticated 
techniques are required. Data compression will also be important for the transmission of images 
to remote sites. 

The migration of scientific visualization procedures to low-end systems is an obvious trend 
since technology advancements in computer hardware occur every 18 months. As high speed 
networks become available, network computing (for example, an application distributed over a 
network) will become more common [31]. In many ways, over the next several years the network 
will become the computer. 

Finally, the use of visual programming environments is a current trend. While AVS is the only 
visualization environment out of the five reviewed to use visual programming, other visual 
programming environments such as SGI Explorer, IBM Data Explorer and Taravisual apE 
[9,11] will be available in 1992. These visual programming environments will be useful for 
software developers especially for the rapid prototyping of visualization software in the early 
phase of the design cycle. 

81 



While each of the visualization software reviewed for this paper does not address all of the 
current trends, it is noted that these tools are extremely powerful and can assist the engineer in 
analyzing CFD data. 

3 Future  Di rect ions 

The 1990's promises continuing dramatic advances in computer hardware that will be 
exploited in the utilization of scientific visualization. I see the following directions for future 
research in visualization: 

• Virtual Reality 

• Automated Feature Identification 

• Visual Languages 

3.1 Virtual Reality 

Virtual Reality (VR) will offer the engineer the opportunity to interact with the computer in a 
three-dimensional environment in a variety of new and unique ways [4,6,14,21,25]. Two VR 
metaphors are currently in use [33]. One is an immersive VR metaphor where the user is 
immersed in a virtual world through a head mounted display. The other is a desktop VR metaphor 
where the user views the virtual world through a "window" on the desk similar to a sailor viewing 
the physical world through a periscope on a submarine. 

Several research thrusts into immersive VR are currently underway. One example is the 
development of a virtual environment at NASA Ames by Bryson and Levit [7] for exploring 
computer simulated 3D unsteady flowfields. This environment (Fig. 8) has been created using 1) a 
boom-mounted head position sensitive CRT display system for viewing, 2) a VPL data glove for 
injecting tracers into the virtual ftowfield and 3) a SGI 4D/380 VGX multiprocessor graphics 
workstation for computation and rendering. 

Research in VR is also being conducted at IBM's T. J. Watson Research Center by Ling 
[2,24] to explore ways in which multiple users can interact in a virtual world (Fig. 9). Using 
datagloves and a network of IBM RS/6000 workstations, the users can not only point in 3D space 
but can also grasp and move virtual objects whose presence can be sensed through tactical 
feedback mechanisms. Tuori [34] of Alias is also conducting research in the use of immersive VR 
for design evaluation with current CAD and CAID software. He is developing a VR viewing tool 
based on a boom mounted stereoscopic display connected to an SGI Skywriter to complement 
the Alias design system. 

An example of a desktop VR application is SimGraphics' Assembly Modeler [33] which was 
developed as part of the Air Force's Automated Airframe Assembly Program. The Assembly 
Modeler is an interactive assembly model simulation that is used to concurrently design and plan 
the parts, tools and manufacturing processes necessary to construct various airplane assemblies. 
This application is used to manipulate, test and verify the assembly of components in a virtual 
space. Users select parts or subassemblies to visualize part-to-part clearances and fits. 

Today's research in virtual reality demonstrates both the potential of virtual reality and how far 
we must go before the hardware and software can provide useful environments for practical 
problem solving. Issues to address in VR include sophisticated, easy to use, high resolution 
head-mount displays, voice controls, input devices for tracking, pointing, drawing and shaping, 
and VR standards. 

3.2 Automated Feature Identification 

Automated feature detection and identification procedures need to be developed for the 
examination of large data sets, especially those for 3D time dependent analyses. As the 
performance of our computers increases, the size of our engineering problems will also increase 
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resulting in massive data sets to be interpreted. Today, visualization procedures are used 
interactively to identify physical phenomena contained within the data. The knowledge required to 
identify the various phenomena (physical and numerical) contained within various types of fluid 
dynamic flows should be built into a knowledge base that could be used by an expert system to 
automatically locate, detect and identify phenomena in fluid dynamic data. The benefits of 
developing these automated feature identification systems are 1) automation procedures reduce 
time of engineer required to analyze data, 2) experience and knowledge of experts is made 
available to less experienced users, and 3) experience is accumulated. 

3.3 Visual Languages 

Visual languages [1,19,20] will provide an alternative to textural languages for the 
development of scientific visualization applications. The visual programming languages developed 
must provide the necessary constructs and predefined functions so that the user of this language 
can apply it to complex problems in scientific visualization. Data flow [1] is currently a popular 
computational model for visual programming languages. Data flow provides a view of 
computation which shows data flowing from one function to another, being transformed as it goes. 
It is noted that AVS, while a useful visualization programming environment, is not a visual 
language. Specifically AVS cannot create new modules while staying in the visual portion of 
AVS. Instead the new module is created using a textual language (C or FOR-TRAN). The benefit 
of developing a visual programming language for scientific visualization will be the increased ease 
in developing scientific visualization applications. 

4 Concluding Remarks 

Scientific visualization is playing an important role in the various stages of a computational 
simulation. The goal in using visualization is to assist existing scientific procedures by providing 
new insight through visual representation. Trends in scientific visualization will depend on 
advancements in computer hardware as well as trends in engineering disciplines such as CFD. 
Current trends in scientific visualization include application of advanced visualization techniques, 
data management, data compression, feature extraction, graphical user-interfaces, migration to 
low end systems, network computing, portability and visual programming environments. Future 
directions for scientific visualization will be in the areas of virtual reality, automated feature 
identification and visual languages. 
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5. Appendix 

5.1 FAST 
FAST (Flow Analysis Software Toolkit) is a general purpose visualization environment for 

CFD applications which has been developed by NASA Ames and Sterling Software. This toolkit 
has evolved into a collection of programs (modules) that communicate via UNIX sockets with a 
hub module which manages a pool of shared memory. The FAST Central module (Fig. 3) is the 
main module from the user's perspective since the graphical data from the other modules is 
managed and interactively viewed using this module. Other modules are called or closed as they 
are needed from the Central module. The modules include: 
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• Animation - used to create and record keyframe animation sequences to videotape. 

• NAS File Input - reads in PLOT3D grid, solution and function files. Also reads in ARCGraph 
files. 

• CFD Calculator - user can define scalar or vector function or select CFD built-in functions. 

• SURFER - used to examine vector and scalar data on computational surfaces. Surfer can 
sweep through surfaces in a given computational direction. 

• TRier - used to create annotation on images. 

• Isoev- used to create iso-surfaces and cutting planes. Also creates vector field deformation 
surfaces on either iso-surface or cutting plane. 

• Tracer - used to create particle traces, which can be animated after calculation. 

• ColorMap - controls color map editing and background color. 

The SGI 4D220/GTX was used as the development platform for this software. The SGI GL 
graphics library was used in developing the graphical procedures. The NASA Panel Library was 
used to develop the user-interface. This software is currently operational on SGI workstations, 

5.2 V I S U A L 3  

VISUAL3 is a visualization environment for the examination of 3D volumetric scientific data 
which is currently under development at MIT. The volume can be represented with either 
structured or unstructured grids. The data in the volume can be steady or time dependent. An 
interesting aspect of VISUAL3 is the dimensional windowing approach (Fig. 4). The three main 
plotting windows are: 

• 3D Window - displays data on three-dimensional surfaces, either from the bounding domain of 
the volume or from cuts from a cutting plane or iso-surfaces. Vector fields can be displayed 
as either tufts or streamlines. 

• 2D Window - displays data on a mapped domain or cutting surface. This window is used to 
seed particles for particle paths and initiate many of the probes and points in 3D space. 

• 1D Window - displays data generated by probe functions in 2D window. 

Using VISUAL3, information contained in the volume can be extracted and displayed in terms 
of  vector clouds, cutting planes, iso-surfaces, vector tufts, pathlines, and tubes (pathlines with 
circular cross-sectional area based on local crossflow divergence). In addition, VISUAL3 has a 
series of probes to locate information at points on a surface, in the viscous boundary-layer and 
along or normal to a pathline. 

VISUAL3 was developed using Stardent's XFDI extension to the X windowing system. Most 
of VISUAL3 is an X application with a few non-standard internal calls to perform Gouraud shading 
for surfaces and 3D support for drawing lines and triangles with hidden surface removal. The 
XFDI model is similar to the PEX standard with the exception that PEX currently does not support 
immediate mode capability to the server. 

5.3 F I E L D V I E W  

FIELDVIEW is an end-user visualization environment that is designed for CFD applications. 
The software tool is being marketed by Intelligent Light and has been jointly developed with 
United Technologies Research Center (the prototype was developed in the UTRC Visualization 
Lab [28]). The visualization system's graphical user interface has been constructed using the 
Open Software Foundation's Motif and X. The 3D graphical procedures are developed using 
Intelligent Light's IVIEW-DORE, a portable enhanced version of the DORE graphics library. The 
layout of FIELDVIEW's graphical user-interface is shown in Fig. 5. The main panel across the top 
of the screen consists of several pull down menus which open various panels for: 

• File Input - reads in PLOT3D grid, solution and function files. 
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• Function Calculator - user can select PLOT3D CFD built-in functions. 

• Computational Surface - used to examine vector and scalar data on computational surfaces. 
Can sweep through surfaces in a given computational direction. Point probes and 2D line 
plots are available. 

• Iso-surface - used to create iso-surfaces and cutting planes. 

• Streamlines - controls interactive seeding of particle rakes and integration of current vector 
function. Vector pathlines can be animated after calculation. 

• Titles - used to create annotation on 3D display. 

• Colormap -controls color specifications (object color, color maps for scalar function and 
background color). 

• Viewer - controls viewing position of objects in 3D display. 

FIELDVIEW is designed specifically to be portable to low-end workstations. The software can 
be utilized on systems with either true color (24 bit displays) or pseudo color (8 bit displays). The 
software is currently operational on workstations from HP, IBM, SGI and Sun. In addition the 
software can be operated from color X-Terminals. 

5.4 Data Visualizer 

The Data Visualizer is an end-user visualization environment developed and marketed by 
Wavefront for the analysis of 3D scalar and vector data in a heterogeneous hardware 
environment. The graphics procedures are developed using a custom internal portable graphics 
layer. The Data Visualizer also uses a custom User Interface Management System (Fig. 6). 
Visualization techniques were developed in a tool oriented approach where the following tools are 
used: 

• File Input - reads in data that can be either structured or unstructured. The PLOT3D format is 
available in this system. 

• Data Probe - provide an interpolation lookup of data located in the 3D space. 

• Cutting Plane - offers a variety of cutting planes for examining both scalar and vector data. 

• Iso-surface - creates a 3D contour surface within the volume of the specified scalar value. 

• Particle System - continuously launches particles from a user-defined area to trace vector 
values. 

• Particle Trace - launches a particle to create a streak line through the selected vector field. 

• Motion - used to created animated image sequences. 

• Color Editor - provides control over scalar color maps. 

• Volume Renderin.q - uses ray casting to produce a rendered picture of scalar data. 

This software is available on a range of workstations including HP, IBM, SGI and Sun. 

5.5 AVS 

AVS (Application Visualization System) is a visual programming environment for both end- 
users and software developers that is marketed by AVS Inc. (formerly Stardent). AVS allows 
users to create their own applications by visually constructing flow graphs (called networks in 
AVS) comprised of icons that represent various processing modules. Existing applications (such 
as CFD analyses or CFD data) can be directly integrated into the AVS environment where the 
results from the application can be visualized (Fig. 7). AVS allows for the applications to be 
distributed over a computer network. The basic building blocks of AVS are modules, which 
perform special program functions such as reading in data, analyzing data and rendering the data. 
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In many ways, the AVS environment can be though of as a visual representation of a library of 
modules. AVS has a collection of modules to visualize volumetric data in terms of contours, 
vector fields, iso-surfaces, cutting planes, particle traces and voxel images. It also has modules 
for data probes and line plotting. 

The AVS visualization environment is currently available on systems from Cray, Convex, 
DEC, HP, IBM, SGI and Sun. 
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I n t r o d u c t i o n  

In the last few years, the development of numerical methods for solving the multi- 
dimensional Euler equations with improved shock-capturing properties has been an 
important research topic in computational fluid dynamics. 

Two different approaches are under investigation. The first ad hoc one is based 
on the application of rotated 1-D Riemann solvers, see, e.g., the pioneering work 
of Davis [1]. The second, more general, genuinely multi-dimensional approach 
consists in solving an equivalent set of scalar wave equations with solution-dependent 
propagation directions, as recently proposed by Deconinck et al. [2] and Roe [3]. To 
date, results using the latter methodology, of interest here, have been obtained in 
conjunction with the Fluctuation Splitting [4] space discretization, see [5-7]. 

In this paper, some major improvements are reported, concerning both the 
wave modelling and a proper treatment of solid wall and subsonic inlet and out- 
let boundary conditions. Furthermore, the effectiveness of the explicit multi-stage 
multigrid approach of [7] is demonstrated also for subsonic and transonic flow prob- 
lems. Finally, the present improved genuinely multi-dimensional multigrid method 
is combined with a solution-adaptive-grid strategy to further enhance its accuracy 
and efficiency. 

The  mul t ig r id  Euler  solver 

The present numerical method is based on simple wave solutions of the Euler 
equations [3]. This approach consists in selecting a number N of waves (acoustic, 
entropy, shear), each one having strength a and propagation direction n, so that 
the primitive variable gradient can be decomposed as 

N N 

w - -  (1) 

In eq. (1) ~ is the right eigenvector of the Jacobian (.4n~ +/~ny) with corresponding 
eigenvalue ~ .  For linear initial data, each simple wave evolves in time according to 

k u ~ ( x  - X o , t )  = u0 + w ~ .  [ (x  - Xo)  - ~ . ~ t ] .  (2) 

The global variation of the conservative variables is obtained by adding all of the 
wave contributions. Using eq. (1), one gets 

hr 

u(~ - ~o,t )  = uo + ~ ~ , -~ [ (~  - X o ) . n  ~ - ~ t ] ,  (~) 
k = l  
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which, after differentiation in time, becomes 

N 

= = - ( F =  (4) 
k = l  

Two fundamental issues need to be addressed, namely, the wave modelling and the 
numerical discretization. An analytical solution of eq. (1) can be obtained when 
employing four orthogonal acoustic, one entropy and one shear waves [3]. Such a 
solution provides the intensities of all waves as well as the directions of propagation 
of the acoustic and entropy waves, whereas the direction of the shear is somewhat 
arbitrary. All present models basically differ on the choice of such a direction. In [3], 
Roe chose such a direction perpendicular to the streamline, but the resulting model 
experiences difficulties in resolving oblique shocks. A strong improvement has been 
obtained by employing the direction of the pressure gradient [5]. However, two 
problems are still open: 1) the pressure gradient is not defined for pure shear flows; 
2) numerical disturbances in smooth flow regions inhibit convergence to machine 
zero. In this paper, it is shown that the choice of the direction of the velocity vector 
easily overcomes such difficulties. 

Concerning the numerical discretization, a cell-vertex structured quadrilateral 
grid is employed, each cell being subdivided into two triangles. Using eq. (4), the 
global fluctuation over a triangle S, defined as CT = f s  u~ dS,  is split into the wave 
contributions, as follows: 

N N N 

(5) 
k=l k = l  k = l  

In eq. (5) the cell-averaged values ~ ,  @, Xk can be calculated analytically, if the 
parameter vector z = v/-fi(1, u, v, t t )  is assumed to vary linearly over each trian- 
gle [4,7]. Each wave contribution is then split among the vertices, according to the 
Fluctuation Splitting first-order-accurate N-scheme [4]. 

Characteristic subsonic boundary conditions are imposed: total enthalpy, en- 
tropy and flow angle are specified at the inlet boundaries, while the pressure is 
specified at the outlet boundaries. One row of auxiliary cells is used at walls, the 
state at the mirror-image nodes being calculated by imposing impermeability and 
Isentropic Simple Radial Equilibrium [8]. 

Concerning the efficiency of the numerical method, the classical FAS multigrid 
V-cycle [9] is employed, the relaxation being replaced by the optimally-smoothing 
Runge-Kutta scheme of [7]. Standard full-weighting collection and bi-linear prolon- 
gation operators are used. 

Results  on non-adapt ive  grid 

The flow through the GAMM channel is calculated for two different values of 
the inlet Mach number, using a 128 × 64 uniform non-orthogonal diamond grid. The 
iso-Mach lines for the subsonic case (Mi = 0.6) are shown in fig. la. The solution 
is symmetric except for a small shift at the lower wall, due to entropy generated 
numerically in the re-compression region. The present solutions are considerably 
more accurate than the results of [6], thanks to the present choice of the propagation 
direction for the shear and to the improved boundary conditions. Furthermore, 
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convergence to machine zero is obtained here, see fig. lb ,  where the single- and the 
multi-grid convergence histories are presented. The logarithm of the L 1-norm of 
the residual of the mass conservation equation is plotted versus the work, one work 
unit being defined as one single-stage residual calculation on the f ines t  grid. One 
pre- and one post-application of the optimal three-stage smoother of [7] are used. 
The reduction in the convergence rate, seen at R ~ -2 .5 ,  is due to the well-known 
multigrid alignment phenomenon. Semi-coarsening should reduce such a problem. 

AM = . 0 1 ~ ~  

-i: 

-31 
-sl 

-71 

-91 

- 1 1  

- 1 3  

SG 
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188 * work 
Fig. 1: Subsonic flow results, a) Math contours b) convergence histories 

Similar considerations apply to the solution of the transonic flow case (M~ = 
0.83) shown in fig. 2a. A further  decrease in the MG convergence rate is experienced 
in this case (see fig. 2b), since no extra-relaxations are applied in the shock region. 
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Fig. ~: Transonic flow results, a) Maeh contours b) convergence histories 

A d a p t i v e  g r i d  s t r a t e g y  

One degree of freedom exists when subdividing each quadrilateral cell into two 
triangles. The positive linear scheme with minimum cross-diffusion is produced when 
choosing the diagonal more aligned with the direction of the wave having maximum 
intensity [10], or, in the presence of shocks, with the direction perpendicular to the 
pressure gradient. Since the CFL number, defined here as v = max(v~, t/y), is based 
on the fastest wave, two different sets of optimal predictor coefficients and Courant  
number have to be used, depending wether the diagonal is optimal or not for its 
propagation direction (see [7] for details). In the first case, the optimal coefficients 
are found to be constant (cl -- .1481, c2 -- .4, u = 1.5), whereas, in the second 
one, the directional splitting first-order-accurate stencil is recovered. The optimal 
coefficients cl ,  e2 and ~ depend on the advection speed component  ratio R and are 
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provided by the interpolation function ck u = 6k/(1 + ~/k R), with 6, = .222, ql = ,64, 
62 = . 6 ,  92 : . 5 5 7 ,  63 : 1 . 5 ,  9a = . 5 4 8 ,  c3 = 1 .  

Finally, a local solution-adaptive refinement strategy is employed in conjunction 
with the quad-tree data-structure provided by Hemker et al. [11]. Each quadrilateral 
cell is subdivided into four kid-cells, if needed. The choice is based on the value 

+ T T 
Fig. &: Green points 

Resul ts  on adap t ive  grid 

either of the static pressure gradient multiplied 
by the area, or of the divergence of the velocity. 
An hystogram composed by one hundred classes 
is used to determine the threshold value, the 
percentage of cells to be refined being assigned 
by the user. The conservative variables at green 
points, marked with a cross in fig. 3, are updated 
by linear interpolation only, after visiting the 
coarse grid. 

A shock reflection problem with incident angle of 29 ° and inlet Much number 
equal to 2.9 has been considered as a suitable test for the solution adaptive strat- 
egy described above. Figs. 4 and 5 show the Much contours obtained when using the 

Fig. 4: Iso-Mach - -  diamond grid 
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Fig. 6: Convergence histories 

Fig. 5: Iso-Maeh - -  adapted diagonals 

192 × 64 standard diamond grid and optimal 
diagonal grid, respectively. A strong im- 
provement in the resolution of the shocks is 
achieved, only a small amount of extra work 
being needed: see fig. 6, which shows the 
convergence histories for the optimal diago- 
nal grid (dashed line) and for the standard 
diamond grid (dotted line). The low con- 
vergence rate in the initial adaptive stage is 
due to the dynamic adaptation of the diag- 
onals. 

A considerable efficiency gain is finally 
obtained without loss of accuracy, when using local refinement. The composite grid 
shown in fig. 8, obtained, starting from a 12 × 4 uniform grid, after four nested local 

Fig. 7: Iso-Mach - -  locally refined grid 
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Fig. 8: Composite grid 
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refinements (2,226 cells), produces a solution (fig. 7) quite similar to the one of fig. 5 
(12,288 cells), at a much lower cost: see the solid line in fig. 6. 

Conclusions 

The encouraging results, obtained using the simple wave decomposition ap- 
proach in conjunction with the fluctuation splitting space discretization, stimulate 
further work to improve such a methodology. Some difficulties, as convergence stag- 
nation, still need to be investigated. The explicit multigrid acceleration has proven 
effective in all cases considered so far. 
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I N T R O D U C T I O N  

Among the numerical methods available for inviscid, compressible flows, up- 
wind methods have the property of approximately mimicking physical wave-propa- 
gation phenomena. When dealing with one-dimensional flow problems, the choice 
of appropriate upwind directions is straightforward, since characteristic information 
may only be propagated forward or backward. For two or three-dimensional flow 
problems, the choice is more difficult, with most schemes using directions which are 
normal to the cell faces. Such grid dependent schemes do not always account for the 
domain of dependence of each grid point. The consequences are particularly evident 
when computing shocks oblique with respect to the computational mesh. In such a 
case, the domain of dependence is violated due to the fact that in the vicinity of the 
shock, the velocity component in one of the splitting directions may be subsonic, 
and accordingly, numerical information emanating downstream of the shock may 
reach the upstream region, causing excessive smearing of the oblique shock. 

The authors have presented the rudiments of a rotated upwind scheme in Ref. 
1, where flux-difference splitting has been applied along two orthogonal directions 
for each cell face. The directions were determined on the basis of pressure gradi- 
ent data using procedures similar to those in Ref. 2. Rotated extrapolations and 
flux limiting were used to generate nominal second-order accuracy. Flux evalua- 
tions were based on characteristic variables and a form of characteristic boundary 
conditions was implemented. The method was evaluated on the basis of an oblique 
shock reflecting off a flat plate. The objective of the present effort is to develop a 
multi-dimensional upwind scheme able to satisfy the domain of dependence of each 

• mesh cell by extending the previously outlined technique to general, non-Cartesian 
coordinate systems. 

R O T A T E D  F O R M U L A T I O N  

The first step of the procedure is the determination for each cell face A-B in 
Fig. 1, of the pressure gradient direction, ~± = ±Vp/]Vp]. The sign is selected 
such that ~±.  ~ > 0 with 5 being normal to cell face A-B. In the vicinity of a shock 
wave, fi± will be the direction normal to the shock. We also define a direction nil 
perpendicular to ~± and oriented such that ~ll "~ -> 0. The details of the procedure 
follow from concepts presented in Ref. 2 and are described in Ref. 1. We define a 
to be the angle between ~± and ~ so that -7r/2 < a < +~r/2. 
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Next, the flux F through cell face A-B is decomposed into two components, F± 
in the direction of ~± and FII in the direction of nil, such that 

FAs = F±As cos(a) + F]lAS sin ]al, 

with As being the length of A-B. F± and Fi] will be computed with different stencils. 

(7) e 

(3)@ 
A e(6) 

(2)o I 0(5) 
B 

(+)e e(4) 

e(8) 

Fig. 1. Cell face A-B and surrounding cell centers. 

The procedure for computing the first-order stencils may be illustrated by con- 
sidering cell face A-B and the 6 neighboring cell centers, labeled (1) - (6) in Fig. 
1. For the situation where ~ll is oriented inside the quadrant formed by connecting 
the cell centers (3)-(5)-(1), Ill will be computed using the data of (2) for the left 
state and (5) for the right state. Correspondingly, g l  is computed using the data 
(3) and (4) if a < 0 and using (1) and (6) if a > 0. 

For the opposite case where nH is oriented outside the quadrant formed by (3)- 
(5)-(1), the roles of Fil and F± are reversed. Namely F± is computed from (2) and 
(5) and Fll is computed from (3) and (4) for a > 0 and from (1) and (6) for a < 0. 

Nominal second-order extrapolations have been determined for Fll and F±. Let 
us label the first-order stencil cells as (V) and (W), located respectively on the left 
and right sides of A-B. The first step of our procedure is to estimate the value 
of the vector of characteristic variables, 0 at the left cell face. We denote this 
estimate as 0 -  and obtain its value by a standard mesh-oriented extrapolation as 
O- = Q2 + (02 - 0?)/2. Then forward and baCkward differences are evaluated 
using 0 -  and the first-order stencil values Ov and Ow as VO-  = 2(0-  - Ow) 
and AO- = Ow - Ov. Using a limiter on these differences will produce a limited 
backward difference VO- which can be used to produce a formally second-order left 
state OL as QL = QV + V O - / 2 .  

A similar procedure is used for the right cell face. An estimate 0 + is obtained 
using a standard mesh oriented extrapolation as O + = 05 - (08 - 05)/2. Then 
forward and backward differences are evaluated using O + and the first-order stencil 
values Ov and Ow as VQ + = 0w - Ov and A 0  + = 2(Ow - O+). The final right 
state is OR = Ow - AO+/2, where A0  + is the limited right forward difference. 

In our calculations we have used the Chakravarthy-Osher limiter such that 

VO-  = V 0 -  max[0, min(Z~O-/VO-, 2)1 , 

A Q + =  AQ+ max[0, min(VO+/AO +, 2)]. 

We utilize Roe's approximate Riemann solver for FII and F±. The boundary con- 
ditions have been determined using the improved reflection procedures of Ref. 3. 
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Further details of the basic numerical scheme appear in Ref. 1 including a descrip- 
tion of the classical upwind scheme used in the following comparative results. 

RESULTS and D I S C U S S I O N  

Our first goal was to test the ability of the new scheme to treat~0blique shocks 
on arbitrary grids, but in a controlled setting. We utilized the same shock reflection 
from a flat plate described in Ref. 1, but with a different grid. Instead of the uniform 
Cartesian grid, we adapted a polar grid which subjects the shock to continuously 
changing angles between the shock and the cell faces. We considered the flat-plate 
reflection of an incoming shock penetrating a Moo = 2.9 free stream at an angle 
of 29 °, computed with a 32 by 16 polar grid. The computed isobar patterns and 
pressure distributions, (not shown here because of space limitations), have reaffirmed 
the previous uniform grid results in Ref. 1. Namely, that the rotated scheme 
computed the shock with only 2 cell centers located within the shock transition 
region compared to classical results which contained at least 4 cell centers. 

:'. '. : : : : '. '. : : '. '. '. : : ! : ~ ' ~  ~ : ~ "  .~,~-~-.~-~J '~--~'d2 

II  I I I I ; ', ', ', ~ '. '. ', ~ • • • .  ~ ' - - - - ~ . ~ :  ~ '. ' . ~ ' , ~ % ~ - ~ ' ~ . .  '. '. '. '. '. : : '. '. ~ : ' ~ " c ~ . ~  ' ' .  L : ~  

Fig. 2a. Isobars with rotated formulation, 8%ramp problem, M=3.0. 

Fig. 2b. Isobars with classical formulation, 5°-ramp problem, M=3.0. 

The first test case presented is the M = 3.0 flow through a channel with a 5 ° 
compression ramp followed by a 5 ° expansion corner• Computed isobars for a 61 by 
21 grid for the rotated scheme are presented in Fig. 2a and for the classical scheme 
in Fig. 2b, The pressure distributions along the upper wall and along a line located 
at 62.5% of the channel height are shown in Figs• 3a and 3b respectively• 
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Fig. 3a. Pressure distribution on 
upper wall, 5°-ramp problem, M=3.0. 
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The rotated and classical results are compared to the exact solution. These results 
reaffirm the findings that the rotated formulation gives improved shock resolution. 
In addition, the rotated scheme gives the correct post-shock pressure levels, which 
indicates an improved accuracy over the classical scheme. 

Fig. 4a. Isobars with rotated formulation, 15°-ramp problem, M=2.0. 

Fig. 4b. 

i i i i i i i i i i i i i i i i 157kk,W~,~/Ji i ,i i . . . . . . . . .  l l l l  
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~ , I ,, ,, ,, ,, ,, ,, . . . . . . . . . . . . . . . . . . . . . . . .  

Isobars with classical formulation, 15°-ramp problem, M=2.0. 

Next, we considered the M = 2.0 flow through a channel with a 15 ° compression 
ramp followed by a 15 ° expansion corner. In this case, the ramp shock is slightly 
weakened by the corner expansion fan and results in a Mach reflection from the 
upper wall. Computed isobars for a 61 by 21 grid for the two schemes are given 
in Figs. 4a and 4b. The Mach number distribution along the upper wall and the 
pressure distribution along a line located at 52.5% of the channel height are shown 
in Figs. 5a and 5b respectively. These figures again confirm our findings that the 
rotated scheme accurately reproduces the wave-like features of these flows with a 
higher level of accuracy than corresponding classical upwind schemes (as noted by 
the resolution of the expansion wave in Fig. 5b). Although the shock angle is 
steeper (close to 45 °) for this case, the rotated formulation still produces a shock 
whose thickness is reduced by about 50% of the classical result. 
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Fig. 5a. Mach number distribution on 
upper wall, 15°-ramp problem, M=2. O. 
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The final case presented is a M = 1.4 flow through a channel with a 4% circular- 
arc bump on the lower wall with a height-to-chord ratio of 1. The computed Much 
contours for the rotated and classical schemes on a grid of 61 by 32 (with 32 of the 
61 on the bump surface) are presented in Figs. 6a and 6b, respectively. The main 
features of the flow, including the A-shock on the upper wall and the interaction of 
the reflected shock with the trailing-edge shock, are evident. We have affirmed grid 
convergence for this case with calculations of 48 and 64 cells in the normal direction 
and along the surface of the bump. In this case the shock angles are nearly 60 ° and 
the advantages of the rotated formulation should be diminished. Nonetheless, the 
shock width has been reduced by roughly 25-30%. The A-shock and the subsonic 
region behind the Mach stem appear to be accurately described. The minimum 
Mach number computed for the grid with 32 cells on the bump is 0.89. For the 
grids of 48 and 64 cells on the surface of the bump, this value is reduced to 0.84 and 
0.81, respectively. 

i 
Fig. 6a. Mach contours with 
rotated formulation, 4~o circular-arc 
bump in channel, M--1.4. 

Fig. 6b. Mach contours with 
classical formulation; A M  = 0.05. 
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ON A METHOD TO CONSTRUCT GODUNOV-TYPE SCHEMES 

Valery V. Dedesh 

TsAGI,Central Aerohydrodynamics Institute,140160Zhukovsky-3, 

Moscow Region,Russia,fax:(095)271.00.19 

INTRODUCTION 

Shock capturing schemes to compute discontinuous solutions of gas- 

/hydrodynamics must be monotone. First-order accurate Godunov-type sche- 

mes are monotone, but methods of their construction [1,3-6] are sometimes 

impracticably complex. The Godunov-type schemes, constructed using the 

proposed method PPV (Polynomially Presented numerical Viscosity matrix 

[2]) are more convenient (from different points of view), than other 

schemes. In particular, PPV schemes are extremely cheap, easy-to-program, 

do hot need characteristic transformations to operate and allow to bypass 

the problem of nonuniqueness of eigenvector basis [6], arising when com- 

puting multi-D, turbulent or chemical/thermal nonequilibrium flows. 

DEFINITIONS 

A numerical solution of gasdynamics conservation laws, 

Ow/Ot+Of(w)/Ox=0 (i) 

where w is a conservative variables vector and f(w)-the corresponding 

vector of fluxes, is sought on the uniform grid, whose steps in time 

and space h are chosen to verify the stability condition (CFL) 

l a k l - X ~ / ~ l  , (k=~/h) for every eigenvalue a k (real due to hyperbolicity of 

(i)) of the matrix A(w)=Of(w)/Ow. With the following definitions: 

xi-abscissa of the i-th grid point 

x!=(Xo+Xl)/2-abscissa of the interface between x o and x I 
2 o 

Wo,W -the value of w at the moment t=0,t=z at x o 

~b_~-the value of ~b at the interface x ! at the moment t=0 
2 2 

the conservative schemes to numerically compute (I) are 
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w°:Wo-k'(f~-f ~), (2) 

where f~=f½(Wo,Wl), a function of two arguments, is either 

f}:}'(fo+f1-Q}'A~w) (3a) 

for "FDS" schemes [3] or 

f~:}'(fo+f1-Q1"w1+Qo'Wo ) (3b) 

for "FVS" schemes [4,5]. The numerical viscosity matrices Q in (3) are 

introduced to duly account for signal distributions in (I). 

THE METHOD 

Let the positive matrices Q commute with A: A-Q=Q-A, then schemes 

(3) are stable and monotone, if the conditions 

X2-A2~X-Q-~I (4a) 

X-IAIHX-Q6I  (4b) 

r e s p e c t i v e l y  a r e  m e t  f o r  e v e r y  e i g e n v a l u e  o f  Q a n d  A. H e r e ,  t h e  e i g e n v a -  

l u e s  o f  IAI a r e  m o d u l i  o f  t h o s e  o f  A a n d  I i s  a u n i t  m a t r i x .  W i t h i n  t h e  

m e t h o d  PPV [2]  t h e  m a t r i c e s  q a r e  e x p r e s s e d  a s  p o l y n o m e s  i n  A: 

2 
Q = q o ' I + q l " A + q ~ ' A  (5 )  

The c o e f f i c i e n t s  q 0 , 1 . 2  a r e  f u n c t i o n s  o f  t h e  t h r e e  d i s t i n c t  e i g e n v a l u e s  

u - c , u , u + c  o f  A (u  i s  a g a s  v e l o c i t y  a n d  c - s p e e d  o f  s o u n d ,  w i t h  M = u / c ) .  To 

c o n s t r u c t  s c h e m e s ,  o p t i m a l  f rom t h e  p o i n t  o f  v i e w  ( 4 )  o n e  s h o u l d  c h o o s e  

the spectrum of q to be close to that of IAI. The Table i contains qo,1,2 

for the (so-called in what follows) "two-wave", "three-wave" and "smooth" 

models of PPV, for the subsonic case luI<c (when the three PPV models 

differ). 

For the three-wave PPV model (QmlAI), the eigenvalues of Q are 

lu-c1,Ju[,]u+cl.The spectrum of Qm!AI is lu-cl,c, lu+cl for the two-wave 
2 

and lu-ci'(l-(M+l)Z/2),c'(l+M )12,1u+cl'(l-(M-l)212) for the smooth PPV 

model. The two-wave PPV model is the simplest; the smooth model is nick- 

named so for continuous differentiability of all its q's (especially in 

sonic and stagnation points) and is almost as simple as the two-wave one; 

the three-wave PPV model is the most exact. 

All the PPV models in the supersonic ease Jul>c are the same with 

qo:q2=0,q1=sign(M). 

FIRST ORDER SC~BEMES 

Using (5) with q0,I,2 of Table i. one writes (3a) as 
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f~:{- (fo+f1-(qo) {'A{w-(ql) {'A{f-(q2) {'A{'A~f) (6) 

We stress here that the matrix A~ and coefficients (qo I 2){ ' used in (6) 

to represent IAI i, are computed using Roe [3] averaging procedure, so 
2 

that the relation A,.'Aiw=Aif holds exactly. The schemes (2) with (6), 
2 2 

using the two- or three-wave PPV models are capable of resolving exactly 

the motion of the shock, formed by two constant states w 0 and w I and mo- 

ving with speed D, and in particular of capturing the stationary shock 

between x o and x~. 

For the schemes (3b) one uses (5) and the exact relation A'w=f [4] to 

write 

f~:½"(fo+fl-(qo) "w1,(ql) "fl-(qz)1"A1"f1+ (7) 

+(qo)o'Wo+(ql)o'fo+(q2)o'Ao'fo ) , 

the second subscript in expressions like (qo)i indicates the node, where 

this coefficient is computed. 

The three-wave model of PPV gives for (3a) the algorithm of Roe [3] 

and for (3b)-of Steger-Warming [4]. The two-wave model of PPV leads to 

schemes, not widely used today (see e.g;[l]). The scheme (3a) with the 

smooth model of PPV is unstable, whereas (3b) with the same model y$elds 

a modified scheme of van Leer [5]. The three models of PPV differ in the 

subsonic case ]uI<c, for the supersonic case luI>c they all yield first 

order accurate upwind schemes. The CFL condition for all of them is ~i. 

SECOND ORDER SCBEMES 

To construct second order schemes one introduces the linear distribu- 

tion of initial data within every computational cell: 

, ~e[-~, .  j ,  (8 )  w(~)=Wo+~.vo w i i 

with the vector Vow=minmod(A~w,A ½w ) [6], which serves to compute 

~))-f(w(- ~)). Let Vof=f(w( i 

+ t .  + l 
q O,2 ---3=~ qo,2' q 1=~'(I-+ql), (9) 

then the vectors w L and w R, playing the role of w oet w I in (3a,b) are: 

WL=Wo+~ • [ (I-X" (q+o)o).VoW-k. (q+1)o.Vof-X. (q+z)o.Ao-Vof] (I0) 

w:w I- ~- [ (l+X- (q-o) i ) "Vlw-X" (q-1) i "vlf-X" (q-2) I -A .vlf] 
with qo, 1,2 and A computed in the corresponding nodal point, whichever is 

the model of PPV. 
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Remark: if in (I0) qo=q2=O, 

scheme MUSCL due to van Leer [6]. 

+ 
q i=1, one arrives at the second-order 

NUMERICAL RESULTS 

To check the proposed algorithms, we have conducted a lot of calcula- 

tions of real and academic flow problems, for different eigensystems and 

with very encouraging results. Fig.l depicts the isobaric curves of the 

Navier-Stokes flow of an incompressible fluid (with pseudocompressibility 

~=I) past the RAE2822 airfoil, computed using the second-order two-wave 

PPV model FDS scheme and direct Newton method, realized in the TsAGI A+M 

[7] CFD package for large Scale computations. 
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Table I: The coefficients of subsonic (lulsc) expansion of Q~IAI 

coef- 
fici- 
ent. 

qo 

ql 

qz 

Numerical viscosity matrix (PPV) model: 

two-wave three-wave smooth 

c'(I-M2) c. IMI (I-M 2) • ~.c . ( I_M2)  2 

M M.(2"IMI-I) }-M'(3-M 2) 

0 (1 -1MI ) / c  0 

- for supersonic flows (lul>c) q0,2=O, q1=sign(M). 
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Fig.l: Isobaric curves of viscous (Re=1000) flow of an incompressible 

fluid past the RAE2822 airfoil at a 9 o incidence, computed using the se- 

cond-order accurate two-wave PPV model FDS [1-3] scheme and Newton method 

[7] on a 61,61 node "O"-grid. The results of the 3-wave FDS scheme are 

almost the same. Total CPU time on VAXII/780 is 16.089 see (9 Newton ite- 

rations) 
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S-DIMENSIONAL UPWIND EULER SOLVER USING 
KINETIC FLUX VECTOR SPLITTING METHOD 

S Deshpande,* S Seka r{  M Nagara th inam~ R Krishnamurthy,§  P S i n h a ,  ~ 
P K u l k a r n i  

* Depar tment  o f  A e r o s p a c e  E n g i n e e r i n g , I . I . S c . , B a n g a l o r e , 5 6 0 0 1 2  
§ Defence R e s e a r c h  & Development  L a b o r a t o r y , H y d e r a b a d , 5 0 0 2 5 8  

INDIA 

1.0 Introduction 

Euler code s based on Kinetic Flux Vector Splitting (KFVS) 
method due to Deshpande[1] and Mandal[2] have been used to solve 
variety of 2-D problems covering Mach numbers range varying from 
subsonic to hypersonic speeds([2],[3]). In this paper KFVS method 
has been used to develop a 3-D code called BHEEMA(Boltzmann 
Hypersonic Euler Equation Solver for Missile Aerodynamics) to 
compute inviscid hypersonic flows around reentry configurations. 

2.0 Kinetic Flux Vector Splitting Method 

The KFVS approach of constructing an upwind scheme for Euler 
equations due to Deshpande & Mandal [1,2], starts with the 
Boltzmann equation of Kinetic theory of gases 

Of ~ Of 
0--~ + v . - -  = J ( f , f )  . (1)  a~ 

which g o v e r n s  t he  s p a t i o - t e m p o r a l  e v o l u t i % n  o f  t h e  v e l o c i t y  
d i s t r i b u t k o n  f which i s  a f u n c t i o n  o f  t ,  x and t h e  m o l e c u l a r  
v e l o c i t y  #. The s t r u c t u r e  o f  t h e  c o l l i s i o n  t e rm J ( f , f )  does  n o t  
m a t t e r  in  t h e  p r e s e n t  s t u d y  as  i t  v a n i s h e s  in  t h e  E u l e r  l i m i t  in  
which c a s e  t h e  v e l o c i t y  d i s t r i b u t i o n  f u n c t i o n  f i s  a Maxwe l l i an  
g i v e n  by 

F = ~ • e ~ p / - ~ ( v - ~  - , ( 2 )  

where 
= I/(2RT) , p = mass density, R = gas constant, 

T = temperature, v = molecular velocity, u = fluid velocity, 

= ratio of the specific heats 

I = internal energy variable corresponding to nontranslational 
degrees of freedom which enforces the prescribed value of 
for the gas. 

I = ( 5 - 3 ~ ) R T / ( 2 ~ - 2 ) .  
I n t r o d u c i n g  a moment f u n c t i o n  v e c t o r  ~ by 

]W = [ 1, v , I  + v a / 2  (3)  

and the  n o t a t i o n  

l f!l , , ,  
= < 4 ,F > m [ p,pu ,pv ,pw ,pe ] and G = <~ ,vF> , 

the Euler equations reduce to the compact form 

1 0 5  



~F ~ .~  
< ~ , ~-~ + > = o ( 5 )  a? 

2.2 KFVS Finite Volume Scheme 

Tile E u l e r  e q u a t i o n s  in  t h e  i n t e g r a l  form a r e  

, . ~ > d3x = 0 (6) 

Y OV 
3 

where V i s  t he  volume of  c e l l  w i th  bounda ry  Or, and d x=dx~dx2dx a.  

Using e q . ( 4 )  and the  d i v e r g e n c e  theorem,  eq (6 )  g i v e s  

O r 3  . . 

Ov 
where dS i s  a s u r f a c e  e l e m e n t  on t h e  boundary  OV and n i s  i t s  
ou tward  normal .  

The e q u a t i o n  (7) can be s p a c e - d i s c r e t i s e d  as  

6 

I ?f )2" ~ / J S J  " dI = -  _ ~ _$ n l _ $  t , l ~  t2t  1 l F.1 
% V 

1=1 

where i , j , k  a r e  c e l l  i n d i c e s ,  Vi i  k i s  t h e  c e i l  volume,  S l i s  any 

of  s i x  (for" h e x a h e d r a l  c e i l  ) o r  f i v e  ( f o r  a p r i s m a t i c  c e i l )  
bounding  s u r f a c e s  o f  ViJk ,  nl= ou tward  normal .  V e l o c i t y  

components  normal  and t a n g e n t i a l  t o  t h e  s u r f a c e  S,  a r e  v n , ,  

v t l l , v ' t 2 1  and ~1, F s l a r e  t he  moment f u n c t i o n  v e c t o r  and t h e  

H a x w e l l i a n  w r i t t e n  in  t e r m s  o f  v t ,  v t l l , v t 2 1  , 

The above e q u a t i o n  can be w r i t t e n  c o m p a c t l y  as  

ijk vijk = - L l s i l  Gs l  ' 

I=I 

where the flux normal to S is given by 
I 

GSl = <~I' VnlFsl> (I0) 
The upwinding property can be enforced by spli t t ing in the 

following manner 

+ F + - _ v F = v + v F (Ii) 
n l  sl n l  sl n l  sl 

+ = ( v n + l v n ,  I ) / 2 ;  Vn, = ( V n - l V n ,  I ) / z  (12) where Vnl 

The Velocity distribution F~I and F~I can be suitably 
extrapolated depending on the order of the numerical scheme. 
In the case of the first order scheme the velocity distributions 
F + and F- for a typical hexahederal finite volume are given by 
sl sl 

F + ( ~ F- = FI i S2 i,j,k s l  = F1 i , j , k  ~ S l  - l , j , k  -- F2 

F s 2  = = = i + l , j , k ,  $ 3  i , j , k  ~ i , j - l , k  

= F = = , 
S4 i,j,k ~ S4 i,j+l,k , S5 i,j,k 
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(13) 
FS5 ~ i ,  j , k - 1 ,  S6 i , j , k  ' S6 i , j , k + l  

G + I f  we deno te  the  f l u x  going out  of  a c e l l  as s l  and the  

f l u x  coming i n t o  the  c e l l  as Gs l ,  t hen  e q . ( 9 )  can be r e c a s t  as 

= G + + G: l  Gsl sl = <~'VnIFsl> = <~'VnlFsl > + <~'VnlFst > (14) 

Using the above expression for G in the eq. (I0) gives first 
sl 

order cell centered finite volume KFVS scheme. 

2.3 Boundary Condition at Wall Surface 

A flow tangency boundary condition has been treated using the 
Kinetic Characteristic Boundary Condition (KCBC). This is based 
on the specular reflection model of Kinetic Theory of gases, 
according to which, the normal component of the velocity of a gas 
molecule gets reversed after impact on the wall, while the 
tangential components remain unchanged. The reflected velocity 
distribution F is given in terms of incident distribution F I by 

FR(vtl w ,Vt2w,Vnw,I) = Fi(vtl w ,Vt2 w, -Vnw,I) (15) 

The fluxes for the solid boundary surfaces can now be obtained 
in a manner similar to the split fluxes for other surfaces. It 
may be mentioned that implementation of the above boundary 
condition does not require any dummy or ghost cells. 

The stability condition for the first order KFVS finite 
volume scheme [2] is given by 

3 F i n i t e  Volume Network 

The f i n i t e  volume network  i s  c o n s t r u c t e d  by g e n e r a t i n g  a 3-d  
g r i d  around a c o n f i g u r a t i o n  ( c o n s i s t i n g  of the  b l u n t  cone-  
c y l i n d e r  - f l a r e  wi th  a s e t  of  c r u c i f o r m  l i f t i n g  s u r f a c e s )  e i t h e r  
by r o t a t i n g  a two d i m e n s i o n a l  a l g e b r a i c  g r i d  in  the  m e r i d i a n  p l a n e  
in  the '  case  of p u r e l y  ax i symmet r i c  r e g i o n s  or  by u s i n g  the  
s t a cked  g r i d  method in  the  case  of r e g i o n s  wi th  l i f t i n g  s u r f a c e s . .  
The a l g e b r a i c  g r i d  g e n e r a t o r  i s  based on a d i s t a n c e  f u n c t i o n  
approach and i s  used fo r  the  r e g i o n  up to  the  l i f t i n g  s u r f a c e .  The 
s t a cked  g r i d  method i s  empioyed in  r e g i o n s  wi th  l i f t i n g  s u r f a c e  
and beyond.  The b a s i c  g r i d  g e n e r a t o r  employed in  g e n e r a t i n g  a 
g r i d  in  a c r o s s - s e c t i o n a l  p Iane  i s  an e l i i p t i c  g r i d  g e n e r a t o r  
based on Thomas-Midde lcof f [4]  p rocedure  c o n t a i n i n g  two g r i d  
c o n t r o l  f u n c t i o n s  ~ and ~ A t y p i c a l  f i n i t e  voIume i s  
c o n s t r u c t e d  from the  c o r r e s p o n d i n g  q u a d r i i a t e r a i s  in  two p rox ima te  
c r o s s - s e c t i o n s  by u s i n g  the  r u l e d  s u r f a c e s  from which t he  
g e o m e t r i c a I  p r o p e r t i e s  of  f i n i t e  volume a re  computed. T r a n s p a r e n c y  
c o n d i t i o n [ 5 ]  i s  employed in  the  r e g i o n  beh ind  the  t r a i l i n g  edges  
of the  l i f t i n g  s u r f a c e s  in  o rde r  to  avo id  the  e x t r e m e l y  r a p i d  
t u r n i n g  of the  g r i d  l i n e s .  

4 R e s u l t s  and D i s c u s s i o n s  

The code 'BHEEMA" has been v a l i d a t e d  a g a i n s t  s t a n d a r d  shapes  
such as cone,  hemi - sphe re ,  a~d then  a p p l i e d  to  the  c o n f i g u r a t i o n  
to o b t a i n  p r e s s u r e  d i s t r i b u t i o n  on the  body and the  aerodynamic  
coefficients. The Maeh numbers covered are from 4 to 14 with 
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a n g l e s  of a t t a c k  0 ° and 2 ° . F ig .1  shows the  p r e s s u r e  
d i s L r i b u t i o n  a]ong ttle body for  Much 6 a t  ze ro  a n g l e  of a t t a c k .  
Table  1 shows the  r e s u l t s  o b t a i n e d .  These a re  compared wi th  t he  
d a t a  a v a i l a b l e  from semi e m p i r i c a l  t heo ry  and wind t u n n e i  
t e s t s [ 6 , 7 ] .  L imi ted  pos t  p r o c e s s i n g  of  d a t a  has been done to  
o b t a i n  the  flow f i e l d  around the  c o n f i g u r a t i o n .  F i g . 2  shows the  
i s o - p r e s s u r e  c o n t o u r s  fo r  tile c o n f i g u r a t i o n  w i t h o u t  the  l i f t i n g  
s u r f a c e s ( f o r  Much no.4  ~=2 d e g . ) .  

From the  compar i son ,  the  f o l l o w i n g  c o n c l u s i o n  can be drawn. 
( i )  The p r e d i c t i o n s  by CFD are  c l o s e  both  to  t h e o r y  and 

expe r imen t  w i t h i n  about  10 % in  most of  the  c a s e s .  
( i i )  In the  case  of a x i a l  fo rce  c o e f f i c i e n t ,  the  d e v i a t i o n  

i s  more from the  expe r imen t  than  t h e o r y  e s p e c i a l l y  in  
the case of Much 4. One r e a s o n ,  p r o b a b l y ,  cou ld  be due 
to  the base  p r e s s u r e  drag measured i s  on the  h i g h e r  
s i d e ,  which when s u b t r a c t e d  from the  over  a l l  a x i a l  
fo rce  measured by the  b a l a n c e  r e s u l t e d  in  lower f i g u r e .  

( i i i )  As f a r  as norma} fo rce  c o e f f i c i e n t  i s  conce rned  i t  i s  
seen t h a t  CFD p r e d i c t i o n  i s  ve ry  c l o s e  to  expe r imen t  
fo r  Much 8 whereas f o r  iower Much numbers the  code 
seems to over  p r e d i c t  by about  15 Z . 

( i v )  As r e g a r d s  p i t c h i n g  moment c o e f f i c i e n t  and c e n t e r  of 
p r e s s u r e  the  code has p r e d i c t e d  c l o s e  to  e x p e r i m e n t .  

(v) For Much beyond 8, e x p e r i m e n t a l  r e s u I t s  a re  no t  
a v a i l a b l e  fo r  compar i son .  

(v i )  From the  above o b s e r v a t i o n s  i t  may be concIuded  t h a t  
the  per formance  p r e d i c t i o n  fo r  M > 8 i s  expec ted  to  be 
b e t t e r  than fo r  Much number l e s s  t han  8 ( which i s  
a l r e a d y  w i t h i n  10% ) i n  view of  the  a s y m p t o t i c  
behav iou r  of the  per formance  p a r a m e t e r s .  
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Mach  

No. 
4 
4 
6 
6 
8 
8 
10 
10 
12 
12 
14 

14 

Table 1. Comparison with Experiments 

Gt 

Degree 

0 
2 
0 
2 
0 
2 
0 
2 

0 
2 
0 

2 

CFD 

0.189 
0.191 
0.170 
0.172 
0.155 
0.157 
0.151 
0.152 
0.150 
0.151 
0.149 

0.150 

C A 

I Exl, t 
0.153 
0.157 
0.137 
0.140 
0.131 
0.134 

CFD 
0.000 
0.110 
0.000 
0.090 
0.000 
0.073 
0.000 
0.068 
0.000 
0.065 
0.000 

0.064 

C N 

Expt 
0.000 
0.092 
0.000 
0.076 
0.000 
0.075 

CFD 
0.000 
0.314 
0.000 
0.259 
0.000 
0.232 
0.000 
0.201 
0.000 
0.187 
0.000 

0.185 

C M 

, Expt 
0.000 
0.268 
0.000 
0.215 
0.000 
0.198 

Xcp 

CFD Expt 
u 

2.841 2.913 

2.858 2.829 

2.924 2~713 

2.882 

2.877 

2.904 

1.11 

T 1.$ 

o.~ 

M o o =  4 

Oc= O° I 

L /D  L 

0.04 &Jo 1:6o i.~o £2, i.N" Cu : 
Along the Lenght of the Body 

Fig. 1. Pressure distribution along bhmt 
cone-cylinder-flare (with lifting surfaces) 

Fig. 2. Iso-pressure  contours  fi)r the  
configuration wi thout  lifting surthces 
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M O N O T O N E ,  H I G H E R - O R D E R  A C C U R A T E ,  
M U L T I - D I M E N S I O N A L  U P W I N D I N G  

B. Koren and H.T.M.  van der M a a r e l  

CWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

1. Introduct ion  
Multi-D upwind discretizations for the steady Euler equations are studied, with the 
emphasis on both accuracy and solvability. The multi-D upwind schemes to be consid- 
ered here use neither decoupling of the Euler equations as in [2, 7], nor rotated fluxes 
as in [1, 5]. The schemes are only based on a rotated interpolation of the left and right 
cell face states. Per cell face, just as with grid-aligned upwind schemes, only a single 
numerical flux is computed: the one normal to the cell face. First-order accurate 
versions of these rotated-interpolation schemes have already been investigated in [3]. 
In the present paper we make an extension to second-order accuracy for a first-order 
accurate scheme from [3], which has good solvability properties. We try to maintain 
these properties. 

2. Extens ion  to monotone ,  second-o rde r  a c c u r a c y  
We consider the linear, scalar, 2-D model equation 

a ~ x +  o y = O ,  0 < 0 - - a r c t a n  < ~ .  (1) 

The extension to second-order accuracy is made for the first-order accurate, four-point 
compact, rotated-interpolation scheme, with the stencil: 

[ ] 1 - a  2 a 2 + a b + b  2 , 0 < 0 <  7r 

a +  b - a b  - b  2 - - ~" 
(2) 

Note that the scheme is nine-point compact for the entire 0-range [0, 2~]. The scheme 
37 is differentiable, also at the angles where it switches (0 = 0, 5, 7r, y ) .  Further, the 

scheme's crosswind diffusion is significantly lower than that of the standard, grid- 
aligned, first-order accurate upwind scheme, whereas it is still positive [3]. If we stick 
to nine-point schemes which use nearest points only, the natural second-order accurate 
extension of scheme (2) is the central, rotated-interpolation scheme with stencil: 

E . 1 _ I  2 ~b2 ~ab 
1 2 ~a , o < o < - .  (3) 

-- -- 2 
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To make scheme (3) monotone, while maintaining second-order accuracy, we first 
introduce a non-smooth limiter. Next, to even allow successful application of a 
multigrid-Newton method, we also introduce a smooth limiter. To derive both lim- 
iters, consider the following blend of schemes (2) and (3): 

[ 1 1 - (1  - co(rhor))a 2 (1 -- w(rho~))a 2 + (1 - w(r~kew))ab + (1 -- W(rv~))b 2 + 
- (1  - ~(r~e~))ab -(1 - ~(r~o~))b ~ 

[ ~(r~°~)½b~ ~(r°~e~)~ab ] 
~- -  - ~ ( r ~ o r ) ~ a  ~ ~ ( r~  )~a  ~ 0 < ~ ( r )  < 1, 0 < 0 < ~, 
o+b --~(r~kow)½ab --~(r, ,or)~b ~ or , _ _ 

(4a) 
with w(r) the limiter function and thor, rskew and rver the following ratios of consecutive 
solution gradients: 

(rskew)i,j = ('U,i-I-I,j-FI -- U,,j)/(Ui,j -- U,-1,j-1) • (4b) 

Note that in the monotonicity theory of e.g. Sweby [8], a blend is taken of the grid- 
aligned, first-order accurate upwind scheme and the grid-aligned, second-order accu- 
rate, fully one-sided upwind scheme (i.e. the ~ = - l - s cheme  in terms of Van Leer [4]). 
In the present paper we follow more the lines of "fee's symmetric TVD approach [9]. 
However, the novelty is that we also consider a ratio of consecutive solution gradients 
which is not grid-aligned (r~kew). A second difference with the existing, symmetric 
TVD approach is that we consider ratios of consecutive solution gradients which are 
defined per cell center and not per cell face. (The pursuit of compactness requires a 
cell-center approach, instead of a cell-face approach.) An apparent drawback of this 
cell-centered way to compute the ratios of consecutive solution gradientsl is loss of 
conservation. However, it can be easily shown that this loss is only O(h2). 

We proceed by deriving the limiters. With (4b), blended scheme (4a) can be cast 
into the four-point compact form 

-((rhor)a 2 ¢(rhor)a 2 + ((r~kow)ab + ¢(rvor)b ~ , 0 < 0 < 2' (aa) 
a 

--((r~kew)ab -((rver)b 2 

where 
1 1). (hb) ~(r) = 1 + ~ ( r ) ( r  - 

The coefficients in (ha) are then required to satisfy the rules of positivity and finity 
(0 _< ((r)  < oo). Together with the requirement co(r) E [0, 1], this may be combined 
to 

< rco(r) < o < ,~ < oo. (6) 
- -  - -  - -  m ' - -  

The accuracy requirements that we impose are 

co(l) 1 
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A proper monotonicity function which satisfies (6) and (7) is e.g. 

w ( r ) = m a x [ m i n ( ~ , l ) , m i n ( 1 ,  m ) ] ,  l < m < o c ,  (8) 

where m can be chosen arbitrarily in the indicated range. For all r, limiter (8) simply 
is the upper bound of the monotonicity domain. The limiter is such that the resulting 
scheme is centered scheme (3) for all r in the range [-1, m]. (By choosing a higher 
value of m, the limited scheme equals scheme (3) over a wider range of r.) In Fig. la  
we depict the limiter and monotonicity domain, which result for m = 2. Because of 
its non-differentiability, limiter (8) is not suited for a Newton-type solution method. 

The second limiter to be presented now is differentiable. We assume the form 

1 (9) - 

ar  2 + fir + "7 

where o 4 fl,'7 C ]R are unknown constants. By imposing requirements (6) and (7), we 
get the limiter 

4 m ( m  - 1) 
a)(r) = r2 _ 2r  + 4 m ( m  -- 1) + 1' 1 < m < 2, (10) 

where m can be chosen freely in the indicated range. (For m > 2 the limiter no longer 
satisfies -1  < r ~ ( r )  for all r.) In Fig. lb we depict a simple example of the present 
smooth limiter (4m(m - 1) = 1), together with the corresponding, most tight-fitting 
monotonicity domain. 

3. N u m e r i c a l  results  
Although the accurate, non-smooth limiter (8) is not suited for our purposes (a 
multigrid-Newton method for the Euler equations), to have a reference for smooth 
limiter (10), we still examine limiter (8)'s performance for the known, rotating cone 
problem (see e.g. [6]). This problem is governed by a linear, scalar convection equation 
on a square domain, where the wind field is a given, steady solid-body rotation around 
the square's center. The exact solution on a uniform, 129 × 129 finite-volume grid is 
given in Fig. 2a. Applying an explicit, fourth-order accurate, four-stage Runge-Kutta 
scheme (with the time step sufficiently small to ensure that the time discretization 
error is negligible with respect to the space discretization error), we obtain the nu- 
merical results given in Figs. 2b - 2d. Non-smooth limiter (8), with m = 2, appears 
to yield monotonicity (Fig. 2c), without reduction of the solution accuracy to that of 
the rotated, first-order accurate scheme (Fig. 2b). In Fig. 2d we present the solution 
obtained by smooth limiter (1O), with 4 m ( m  - 1) = 1. It appears that this smooth- 
limiter-solution is only slightly less accurate than the non-smooth-limiter solution 
given in Fig. 2c. 

Next, smooth limiter (10), with 4 m ( m  - 1) = 1, is applied to a steady, 2-D Euler 
flow with oblique contact discontinuity. The exact solution on a uniform, 32 × 32 
finite-volume grid is given in Fig. 3a; the numerical results are given in Figs. 3b and 
3c. Just as for the rotating cone problem, also for this Euter flow problem, the smooth 
limiter appears to lead to monotonicity (Fig. 3c), without reduction of the solution 
accuracy to that of the rotated, first-order accurate scheme (Fig. 3b). 
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It can be concluded that compact, monotone, second-order accurate, rotated- 
interpolation schemes: (i) are easily implemented, and (ii) may be solved directly 
by multigrid-Newton iteration. 
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Figure l: Non-smooth limiter, smooth limiter and monotonicity domains. 
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Figure 2: Solutions rotating cone problem, after a single rotation. 
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Figure 3: Mach number distributions oblique contact discontinuity. 
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ON A N E W  CLASS OF F L U X  S P L I T T I N G S  

M.-S. Liou 

MS 5-11, NASA Lewis Research Center, Cleveland, OH 44135 

Introduction 

In the 1980s, we have witnessed an explosive interest and research in the upwind 
schemes for its shock capturing capability. Roe [1] gave to this Conference in 1988 
an extensive status review of nearly all upwind techniques. A major concern of these 
upwind schemes is the efficiency/complexity, which becomes even more crucial in 
dealing with a large set of equations such as those for describing noneqnilibrium 
flows. Recent studies also raised concerns about numerical accuracy of some promi- 
nent schemes. Examples are inaccurate viscous-layer solutions by the Van Leer 
splitting and the so-called "carbuncle shocks" by the Roe splitting. Also, positiv- 
ity property that is critical in preserving chemical species calculation can not be 
guaranteed by the Roe or Osher schemes. Clearly, need for improving accuracy, 
efficiency and robustness for treating a wide variety of problems still remains. 

An attempt to address the above issues has been initiated by taking a new approach 
that is different from the current methods. We propose a remarkably simple (ef- 
ficient) class of upwind flux splitting schemes and demonstrate in a wide range of 
problems that its accuracy rivals and in some cases surpasses that of!current promi- 
nent splitting schemes. The concept is general, allowing rooms for improvement and 
accomondating ideas from other schemes. Because of avoiding matrix construction, 
the computation effort for flux evaluation is only linearly proportional to the num- 
ber of equations (n) solved, rather than O(n  2) as required in some existing schemes. 
Briefly put, the present scheme features: (1) simplicity and efficiency, (2) accuracy, 
and (3) positivity-preserving. An early version covering essentially the main ideas 
is reported in [2]. This paper reports some of the considerable new advances, in- 
cluding a generalization to a class of viable flux formulas, a more in-depth analysis, 
and further development for unsteady flows. 

The  M e t h o d  

To illustrate the concept, let us consider the one-dimensional system of conservation 
laws for ideal-gas flows: 

0U OF 
0t + = o (1) 

where U T = (p, pu, pE) ,  the inviscid flux F T = (pU, pU 2 -~-p, pull), and the specific 
total energy E = e + u2 /2  = H - p /p .  

The present scheme begins by treating the convective and pressure terms separately. 
In other words, the convection and acoustic propagation arc recognized as two 
physically distinct (but coupled) processes and thus deserve separate treatment. 
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Mathematically, we propose to separately deal with the genuinely nonlinear ((u - 
a, u -I- a) pair) and linearly degenerate (u) fields. 

We begin by rewriting the flux as a sum of the convective and pressure fluxes, 
F (c) and P respectively: 

( ~ )  u ( ; u )  + P ,  i f c = u  

F = F (c) + = c~ + P = pH 

M pua + P ,  i f c = M  
\eHa/ 

Depending on whether the convective speed c is either u or M, the vector ~,  con- 
sisting of passive scalar quantities, has the corresponding contents shown in the 
equations. The pressure flux now contains solely the pressure term. In the finite- 
volume formulation, the difference among all numerical schemes completely lies in 
the definition of the numerical flux at the cell interface. The present method pro- 
poses a new class of flux definitions. First, the numerical convective flux at the 
interface L < ½ < R is effectively written as: 

F(~) 1/2 = cl /2~L/n,  (3) 

where cl/2 is the interface convective velocity (M or u). Its definition is a major 
but simple step in the present method. The convectible variable vector • is then 
upwinded solely based on the sign of cl/2, viz, 

{ ~ L ,  i f  Cl/2 __> O, 

(~)r '/R = ~R, otherwise. (4) 

Note that as cl/2 is identically equal to zero, the sign of cl/2 is immaterial since the 
convective flux F (c) vanishes with cl/2. Now the appropriate question to ask at this 
point is how one expresses the interface convective velocity cl/2. Several formulas 
are appropriate and can be found in [3]. We shall write the interface velocity cl/2, 
as 

c,/2 = + (5) 

to anticipate that it should allow contributions from the 'L' and 'R' states. To define 
the 'L' and 'R' components, we use (u =t: a) as basis function for expansion of c, thus 
allowing interactions of the nonlinear pair. Instead of the convective velocity ul/2, 
Mach number M1/2 was formulated in [2]. The split-Mach version introduces extra 
mixing at the contact discontinuity across which there may be a great difference 
in sound speed. The difference of using the velocity and Mach-number splittings 
shows up, e.g., in shock-tube flow, although in most of steady flows, the results are 
indistinguishable. 

One member of the class that has been proven effective employs a second-order 
polynomial expansion in the subsonic range, which also transitions smoothly at 
sonic point. Let c = u, then 

u* ,; (u ~ lul)/2, if lu I _> a, 
= [ .  4-(u 4- a)2/4a, otherwise. (6) 
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We turn now to the pressure term by writing: 

p~/2 = v + + p~. (7) 

Similarly, a whole host of choices are possible for the pressure splitting. A differen- 
tiable pair of the '+ '  and '-' components are given by: 

p+ = ~ p(1 + sgn(u))/2, if lul > a, 
p(M 4- 1)2(2 :F M)/4, otherwise. (8) k 

This completes the definition of the numerical flux F. 

Putting (3) and (7) together, the interface flux can be recast in the following form: 

110 ] 1  FI/2 = ci/2 ~ L + OR -- ~ [ci/21 /'h/2'~ + PV2" (9) 

where A1/2 {. } = {, } R - { • } C. Here the first term on the RHS is clearly no t a simple 
average of the 'L' and 'R' fluxes, but rather a weighted average via the convective 
velocity. The dissipation term has merely a scalar coefficient Icl/2l and requires 
only O(n) operations for n-dimensional vector F, in contrast to O(n 2) operations 
by the Roe or Osher method, as will be seen next. Furthermore, since there is no 
differentiation (or jacobian matrix) involved in evaluating F1/2, the present method 
is easily extended to general equation of state and non-equilibrium flows and the 
cost is only linearly increased with the additional conservation equations considered. 
Unlike the Roe or Osher scheme, the extension does not yield additional ambiguity 
such as the definition of averaged or intermediate states. Also, numerical tests 
strongly suggest entropy-satisfying property by the present method. Last but not 
the least, the positivity-preserving property can be proved. 

Compar i son  wi th  O t h e r  Spli t t ings 

In what follows we write the other existing upwind schemes for comparison: 

Roe : 1[ ]1  1 
F~/~ = ~ (~O)z +(~o)R - ~ IA(0h/~ l / ' , lnU+ ~(Pc +PR), (10a) 

where 1~1 is the Roe-averaged state, A the flux jacobian, and IAI = A + - A -  in the 
usual sense. The matrix-vector multiplication is O(n2). 

O s h e r  : F:/2 = ~ (uO)L + (uO)n -- ~ IA(U)I dU + ~(PL + PR), (10b) 

1[ ]1 
Van Leer/H~ner : R~/2 = ~ (MO)L + (M~)R - ~ AI/21MIO + rh/2, (10c) 

1 A~/21AIU + ~(P,. + PR). Steger - Warming : F1/2 = (uO)L + (uO)R - 

( 1 0 d )  
In the last expression, the homogeneous property of degree one has been exploited. 
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The Van Leer/Hgner splitting is also seen to require only O(n)  operations. The 
Steger-Warming and Roe splittings differ only in the evaluation of the absolute 
jacobian, where in the latter the absolute quantity is evaluted using both the 'L' 
and 'R' states and is taken outside of the difference operator, as also observed in 
the present method. On the other hand, the so-called flux-vector splittings(FVS) 
share the similar nature by differencing the absolute quantity. In comparison, the 
method retains the simplicity and efficiency of the Van Leer scheme, but achieves 
the high level of accuracy attributed only to the Roe and Osher methods, as borne 
out by a variety of Euler and Navier-Stokes calculations. 

Resul t s  and Discuss ion  

We have tested the present method on Euler and Navier-Stokes equations over a 
wide range of geometries and parameters. We evaluate its effectiveness by consider- 
ing the accuracy and efficiency. Due to page limitation, we will include only typical 
results, readers are refered to [3] for more detailed descriptions. 

Figure 1 shows the temperature distribution of a conic flow. The present and Roe 
solutions are essentially identical, while Van Leer splitting produces too thick a 
boundary layer. For the shock wave/laminar boundary-layer interactions, Fig. 2 
displays very good agreement of the present solution with the data at both separa- 
tion and reattachment points (Note: no Cf data available in the separated region). 
Figure 3 shows the Mach contours over a circular cylinder, indicating complete sym- 
metry and a well-captured shock. The convergence hitories for the above two flows 
are given in Figs. 4, along with the effect of the CFL number and spatial accuracy. 
Noteworthy is that the second-order solution attains slightly faster convergence. 
Depicted in Fig. 5 is a 3D Navier-Stokes solution of the shuttle orbiter, pressure 
on the surface and Mach contours on 3 streamwise surfaces. Detailed examination 
reveals flow separation occuring at the engine pod. 

For unsteady tests, Table I summarizes the performance of several schemes over a 
spectrum of speed regimes, again details are given in [3]. 
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Table I Comparison of upwind schemes for shock-tube problems 

Problem Van Leer/H&uer Roe Osher Present 

Stationary Contact 
Slowly Moving Contact 
Colliding Flows(M = 022) 
Colliding Flows(M 0.20) 
Colliding Flows(M 25.0) 
Receding Flows(M 0.20) 

(blank indicates failed or unacceptable solution and 
x/indicates accurate solution, while degree of accuracy may vary) 

119 



A SECOND-ORDER MULTIDIMENSIONAL SEQUEL 
TO GODUNOV'S METHOD 

l.Men'shov 

I n s t .  o f  A p p l i e d  Ma thema t i c s ,  R u s s i a  Academy o f  S c i e n c e s ,  
M i u s s k a j a  sq.  4, Moscow, 125047, R u s s i a  

A method of  s e c o n d - o r d e r  a c c u r a c y  f o r  i n t e g r a t i n g  t h e  
e q u a t i o n s  o f  i d e a l  c o m p r e s s i b l e  gas f l ow  in  m u l t i d i m e n s i o n a l  
c a s e  i s  c o n s i d e r e d  in  t h e  p a p e r .  Th i s  method may be r e g a r d e d  
as  a n a t u r a l  s e q u e l  to  Codunov ' s  method.  The s e c o n d  o r d e r  
a c c u r a c y  i s  a c h i e v e d  by t a k i n g  t h e  d i s t r i b u t i o n s  o f  t h e  
s t a t e  q u a n t i t i e s  i n s i d e  a c o m p u t a t i o n a l  c e l l  to  be l i n e a r  as  
r e g a r d s  t h e  space  c o o r d i n a t e s ,  r a t h e r  t h a n  u n i f o r m  as i n  
Uodunov ' s  method.  Both t he  c a s e  o f  u n s t e a d y  e q u a t i o n s  and 
t h e  ca se  o f  s t e a d y  e q u a t i o n s  o f  s u p e r s o n i c  f l o w  a re  
c o n s i d e r e d .  

1 . f i e n e r a l i z e d  p rob lem o f  b r e a k - u p  of  a s i n g l e  d i s c o n t i n u i t y .  

The base  s t e p  in  Godunov ' s  method i s  to  use  t h e  Riemann 
p r ob l em s o l u t i o n  ( b r e a k - u p  of  a s i n g l e  d i s c o n t i n u i t y }  f o r  
c o m p u t i n g  o f  a n u m e r i c a l  f l u x  t h r o u g h  t h e  s i d e  edges  o f  t h e  
c o m p u t a t i o n a l  c e l l .  In  t h e  case  o f  u n i f o r m  d i s t r i b u t i o n s  t h e  
p rob lem i s  s e l f - s i m i l a r  and has a n a l y t i c a l  s o l u t i o n .  I t s  
c o m p l e t e  i n v e s t i g a t i o n  was g i v e n  in  [1 ] .  

I f  n o n - u n i f o r m  d i s t r i b u t i o n s  a r e  used  we a r r i v e  a t  t h e  
g e n e r a l i z e d  ( n o n s e l f - s i m i l a r )  Riemann p rob lem (GRP). In  t h e  
1D case  i t  was i n v e s t i g a t e d  in  [ 2 , 3 ]  ( f o r  t h e  Lag rangean  
f l o w  e q u a t i o n s }  and in  [ 4 , 5 ]  ( f o r  t he  E u l e r  e q u a t i o n s } .  
F u r t h e r  we c o n s i d e r  a m u l t i d i m e n s i o n a l  s e q u e l  to  GRP. 

From t h e  m a t h e m a t i c a l  p o i n t  o f  view i t  r e d u c e s  t o  t h e  
Cauchy p rob lem f o r  t h e  3D n o n s t e a d y  E u l e r  e q u a t i o n s  w i t h  t h e  
i n i t i a l  d a t a  f o r  t=O : 
(1 .1} f ( r , O ) = f _  (r) i f  x < 0 and f ( r ,O)=f+  (r) i f  x > 0 

where r = ( x , y , z )  = space  c o o r d i n a t e s ,  t = t i m e ,  f+ = a r e  
m 

two a r b i t r a r y  a n a l y t i c a l  f u n c t i o n s  (f d e n o t e s  t h e  v e c t o r  o f  
gasdynamic  p a r a m e t e r s } .  In  a g e n e r a l  c a se  c o n s t r u c t i n g  
t h e  a n a l y t i c a l  s o l u t i o n  to  t h i s  p rob lem g l o b a l l y  i n  t h e  
e n t i r e  f l o w  domain i s  p r a c t i c a l l y  i m p o s s i b l e .  However, i t  
may be c o n s i d e r e d  l o c a l l y  nea r  any p o i n t  (r=O) of  i n i t i a l  
d i s c o n t i n u i t y .  

To do t h i s  we w i l l  pu t  t he  o r i g i n a l  e q u a t i o n s  i n t o  t h e  x - 
c h a r a c t e r i s t i c  form,  by i n t r o d u c i n g  t h e  new v a r i a b l e s  ~, e 

= x t -1, e = (x 2 + t 2 ) i /2 ,  t h e  s p e c i f i c  e n t r o p y  
s = s ( p , p ) ,  t h e  sound  v e l o c i t y  a = a ( p , p )  and c=pa : 
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(1.2) cD+ (u) ± D+ (p) = 0 B+, 

D (z) = 0 B , z = (v,~,s) T 
where (u,v,w) = Cartesian coordinates of veloci ty,  p and p 
= d e n s i t y  and p r e s s u r e ,  D+ and D = the  o p e r a t o r s  of  

d i f f e r e n c i n g  a long  the  c o r r e s p o n d i n g  x - c h a r a c t e r i s t i c s ,  B+ 
m 

and B = the  te rms  which i n c l u d e  no d e r i v a t i v e s  wi th  r e s p e c t  
to  A and O. 

Denot ing  F = ( u , v , w , p , s ) ,  we w i l l  look f o r  a s o l u t i o n  
to  the  sy s t em of  e q u a t i o n s  (1 .2)  in  the  form 

( 1 . 3 )  F = F o (A ,y ,z )  + O F 1 (~ , y , z )  + 0 (0 2 ) 

S u b s t i t u t i n g  t h e s e  expans ions  i n t o  the  c o r r e s p o n d i n g  
e q u a t i o n s  and c o n s i d e r i n g  the  z e r o t h  a p p r o x i m a t i o n  wi th  
r e s p e c t  to  0 , we f i n d  t h a t  the  f u n c t i o n s  F o may be long  

among the  t h r e e  c l a s s e s :  

(1 .4)  A o = ( F o :F  o = 0 } 
J • J • • 

A± = { F o : u o ± a o = ~" CoU o + Po = O, s o = v  o =w o=0  } 
where t he  prime d e n o t e s  a d e r i v a t i v e  wi th  r e s p e c t  to  ~. The 
c l a s s  A o c o r r e s p o n d s  to a c o n s t a n t  (wi th  r e s p e c t  to  t ime ) 

f low,  whi le  A+ to  the  r i g h t  (+) and the  l e f t  ( - )  r a r e f a c t i o n  

waves. 
The f i r s t  a p p r o x i m a t i o n  wi th  r e s p e c t  to  0 g i v e s  us the  

sy s t em of  l i n e a r  d i f f e r e n t i a l  e q u a t i o n s  t h a t  d e t e r m i n e s  the  
f u n c t i o n s  F 1 in  the  c o n t i n u i t y  domain. C o e f f i c i e n t s  of  t h i s  

sy s t em w i l l  depend on the  f u n c t i o n s  F o ( 1 . 4 ) .  

eachBYf c ° n s i d e r i n g o  the  sys t em of  e q u a t i o n s  s e p a r a t e l y  f o r  
the  t h r e e  c l a s s e s  ( 1 . 4 ) ,  we may prove  the  f o l l o w i n g  

Pro_oposition: 

Depending on the  c l a s s  of  f u n c t i o n s  F o, a g e n e r a l  

s o l u t i o n  to  t he  sys tem of  f i r s t  a p p r o x i m a t i o n  e q u a t i o n s  has 
t he  forms - 
(1.5) I) F o c A o 

C (u o + a o - A) + (B ) _ C z ( u  o - a o - A) + ( B _ )  
+ _ 1 + 0 , i  1-  k2  1 / 2  11 ( I + A 2 ) 1 / 2  ( i + ) 

C ( u  o - k )  + B o 
ZI  ( 1 + A 2 ) I / 2  , C = (C 3 , C 4 , Cs ) 

I I )  F o c A+ 

i t ¥  + , ) 11¥ = Qo (Cz + fl)  ' 11- = ( 0 . 5  - u  o + L 

Z = ~t2 1 /2  C + d ~t t ( 1 + ) - ao Co ' 
C = (C3, C4, C s) 
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Co 3/2 ' 8a ( B ± ) o  
Q°~( 1 + ~2 ) 1/2 ,L = - PO [s~-s-- ]0 sl -  2 ( 1 +  ~2 ) I/2 

[ 8 In c ]o Uo [ 1+c_____~2 1/2 ( B y ) o  d ~ 
0 s ] s 1 d X ± ~ 2 Co3/Z 

fi 

a 0 
+ 

where 11- = CoUl±pl; C i i= 1 . . . . .  5 - a r e  a r b i t r a r y  c o n s t a n t s .  

We have t h u s  found  in  t he  a n a l y t i c  form t h e  g e n e r a l  
s o l u t i o n  to  t h e  f i r s t - o r d e r  a p p r o x i m a t i o n  e q u a t i o n s  f o r  b o t h  
t h e  c o n s t a n t  f l o w  and r a r e f a c t i o n  wave domains .  

I t  may be shown t h a t  t h e  z e r o t h  a p p r o x i m a t i o n  o f  GRP 
(1 .1 )  c o r r e s p o n d s  to  s e l f - s i m i l a r  b r e a k - u p  of  a s i n g l e  
d i s c o n t i n u i t y .  In  t h i s  c a se  t h e  e n t i r e  f l ow  domain i s  
decomposed i n t o  a s e r i e s  o f  subdomains ,  s e p a r a t e d  f rom each  
o t h e r  by s u r f a c e s  o f  d i s c o n t i n u i t y  o f  t h e  f l ow  p a r a m e t e r s  or  
t h e i r  d e r i v a t i v e s .  Each subdomain  c o n t a i n s  e i t h e r  a c o n s t a n t  
f l ow  or  a r a r e f a c t i o n  wave. I t  i s  o b v i o u s  t h a t  t h e  s p a t i a l  
v a r i a b l e  domains  o f  t h e  f u n c t i o n s  F 1 c o i n c i d e  w i t h  

c o r r e s p o n d i n g  subdomains  g i v e n  by s o l v i n g  t h e  GRP (1 .1 )  i n  
t h e  z e r o t h  a p p r o x i m a t i o n  w i t h  r e s p e c t  to  0 . The s o l u t i o n  in  
t h e s e  subdomains  i s  known: i t  i s  d e s c r i b e d  e i t h e r b y  
r e l a t i o n s  ( 1 .5 )  or  by ( 1 . 6 ) .  Hence, one can c o n s i d e r  t h e  
s o l u t i o n  of  t h e  GRP in  t h e  f i r s t  a p p r o x i m a t i o n  to  have been  
c o n s t r u c t e d ,  but  w i t h  t h e  p r e s e n c e  o f  a r b i t r a r y  c o n s t a n t s .  

For e v a l u a t i n g  t h e s e  c o n s t a n t s  we use  f i r s t  t h e  i n i t i a l  
d a t a  a t  ~ = ± = and s e c o n d  t h e  l i n e a r i z e d  r e l a t i o n s  a t  
d i s c o n t i n u i t i e s ,  which a r e  r e d u c e d  to  t h e  e q u a l i t y  o f  
~ a r a m e t e r s  i n  t h e  weak d i s c o n t i n u i t y  ca se  or  to  t h e  

a n k i n e - H u g o n i o t  r e l a t i o n s  i n  t h e  shock  wave c a s e .  
By c o n s i d e r i n g  a l l  p o s s i b l e  v a r i a n t s  o f  t h e  wave p a t t e r n  

a r i s i n g  in  t h e  z e r o t h  a p p r o x i m a t i o n  ( t h e  s e l f - s i m i l a r  c a s e )  
we may p rove  t h a t  t h e  GRP to  t he  f i r s t  a p p r o x i m a t i o n  wi t~  
r e s p e c t  t o  0 can  be s o l v e d  c o m p l e t e l y ,  i . e .  a l l  t h e  
c o n s t a n t s  a r e  d e t e r m i n e d ,  t o g e t h e r  w i t h  t h e  d i s c o n t i n u i t y  
s u r f a c e s .  In  f u l l  d e t a i l  t h e  p r o o f  o f  t h i s  p r o p o s i t i o n  f o r  
t h e  1D c a s e  i s  g i v e n  in  [4 ] .  For t he  3D case  i t  i s  done by 
a n a l o g y  w i t h  t h e  19 c a se .  

2. C o n s t r u c t i o n  o f  t he  g e n e r a l i z e d  Godunov scheme.  

Now we return to the system of 3D nonsteady Euler 
equations: 

( f i ) t  + div ( F i ) = 0 , i=1 . . . . .  5 
where fi = the gas  p a r a m e t e r s  (density, x-momentum and etc.); 
F.= the f lux vector. We rewrite i t  in the integral form for 

1 

any 3D cell: 
t o +T 

I  °!ol ( 2 . 1 )  ~ ~ i d v  = - ( F i , n  I d ¢ , i= l  . . . . .  5 
t= t  0 k = l  ff 

where ~k d e f i n e s  t h e  c e l l  f a c e ,  n i s  i t s  e x t e r n a l  normal  
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t o and to+ w a r e  two t ime  moments.  

R e l a t i o n s  (2 .1 )  a r e  an e x a c t  c o n s e q u e n c e  of  t h e  o r i g i n a l  
e q u a t i o n s .  Us ing  d i f f e r e n t  a p p r o x i m a t i o n  methods  f o r  
e v a l u a t i n g  t h e  i n t e g r a l s  i n  t h e  r i g h t - h a n d  s i d e  o f  ( 2 . 1 )  we 
o b t a i n  d i f f e r e n t  e x p l i c i t  f i n i t e - d i f f e r e n c e  schemes ,  whose 
a p p r o x i m a t i o n  p r o p e r t i e s  o b v i o u s l y  depend  on t h e  p r e c i s i o n  
of  t h e  i n t e g r a l  c o m p u t a t i o n s .  We use  t h e  s o l u t i o n  o f  t h e  GRP 
fo und  above to  e v a l u a t e  t h e s e  i n t e g r a l s  i n  t h e  f o l l o w i n g  
manner. 

Let the parameter values { fo } be given at the central 

point of each cell. By using Van Leer's procedure [5] one 
can obtain the space derivatlves of f in the cells. Having 
linear distributions of the parameters on the left and right 
of the cell face ~k' we can consider GRP. Its solution found 

above has the form (i.3). Denote it by frs" Substituting 

this solution into the integrals in the right-hand side of 
(2.1) we obtain the first order approximation of the 
integrals: 

( 2 . 2 )  ~ ( F i , n ) d e =  ( F  i (f )'"'1 rs O=to+T/2 l¢ k I + O(h  a ) 

where h is  a c h a r a c t e r i s t i c  s ize of the c e l l ,  ICkldenotes 
t h e  a r e a  o f  t h e  c e l l  f a c e .  Such an a p p r o x i m a t i o n  of  t h e  i n -  
t e g r a l s  a l l o w s  us to  o b t a i n  an e x p l i c i t  g o d u n o v - t y p e  scheme 
which  f o r  smooth  s o l u t i o n s  and w i t h  t h e  t i m e - s t e p  l i m i t e d  by 

C o u r a n t - t y p e  i n e q u a l i t y  has  t h e  s e c o n d - o r d e r  a c c u r a c y  b o t h  
i n  sp ace  and in  t i m e .  

3. S t e a d y  s__~personic f l ow  e q u a t i o n s .  

The a p p r o a c h  c o n s i d e r e d  above can be a p p l i e d  to  i n t e g -  
g r a t i n g  t h e  e q u a t i o n s  o f  s t e a d y  s u p e r s o n i c  f low.  The r o l e  o f  
t h e  GRP i s  p l a y e d  h e r e  by t h e  p rob lem on i n t e r a c t i o n  of  two 
n o n - c o n s t a n t  s u p e r s o n i c  f l o w s .  Th i s  p rob lem can be s t u d i e d  
in  t h e  f i r s t  a p p r o x i m a t i o n  n e a r  any p o i n t  o f  t h e  i n t e r a c t i o n  
s u r f a c e s  and i t s  a n a l y t i c a l  s o l u t i o n  can  be c o n s t r u c t e d  in  
t h e  e x p l i c i t  form and be used  f o r  e v a l u a t i n g  t h e  f l u x .  In  
d e t a i l  t h i s  s u b j e c t  i s  t r e a t e d  in  [6 ] .  

4. P r e l i m i n a r y  r e s u l t s .  

Numer ica l  r e s u l t s  g i v e n  below have been o b t a i n e d  by t h e  
c l a s s i c a l  (1 o r d e r  a p p r o x i m a t i o n )  scheme - S1 and by i t s  
g e n e r a l i z a t i o n  p r o p o s e d  above (2 o r d e r  a p p r o x i m a t i o n )  - $2. 

We d e m o n s t r a t e  t h e  r e s u l t s  o f  two p r o b l e m s .  The f i r s t  i s  
s t e a d y  s u p e r s o n i c  f l ow  c o m p u t a t i o n  in  t h e  p l a n e  c h a n n e l .  I t s  
g e o m e t r y  i s  d e f i n e d  by t h e  l i n e  9 = 0 ( symmetry  a x i s )  and 
t h e  l i n e s  y = 1, y = 0 . 5 x  + const, which c o n j u g a t e  i n  t h e  
smooth  manner t h r o u g h  a segment  o f  a p a r a b o l a  on t h e  
i n t e r v a l  x e [ O, 1 . 5  ]. In  t h e  i n i t i a l  c r o s s - s e c t i o n  x = 0 
t h e  u n i f o r m  f l o w  ( u, v, p, p ) = ( 2, O, 1, 1 ) i s  g i v e n .  
F i g u r e  1 shows t he  r e s u l t s  o f  c a l c u l a t i o n s  ( t h e  d e n s i t y  RO 
and t h e  p r e s s u r e  P} on a u n i f o r m  c o n s t a n t  g r i d  a t  c r o s s  
s e c t i o n  x = 6 o b t a i n e d  by S1 (80 comput ,  c e l l s ,  l e f t )  and by 
$2 (20 comput ,  c e l l s ,  r i g h t  ). The s o l i d  l i n e  c o r r e s p o n d s  to  
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the scheme $2 ( 200 comput, c e l l s ) .  The second i s  
computat ion of  a compres s ib l e  f low around a sphere  (N== 2, 
where N~is the f r e e  stream Mack number). The r e s u l t s  are 
i l l u s t r a t e d  in  F igures  2, where the Mack number i s o l i n e s  
ob ta ined  on the uniform gr id  (32x32 comput, c e l l s )  by $1 
( l e f t )  and by $2 ( r i g h t )  are shown. 
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Preconditioning and Flux Vector Splitting for 
Compressible Low Mach Number Flow 

B. Miiller J. Sesterhenn H. Thomann 

Institute of Fluid Dynamics, Swiss Federal Institute of Technology, 
Zurich 

1 Introduct ion  

In low Mach number flows, variable density effects can become significant, in par- 
ticular for low speed flows with heat addition, e.g. in combustion. However, the 
numerical solution of the Navier-Stokes equations in the low Mach number regime 
exhibits a stiffness coming from the Euler equations. Since the ratio of the fastest 
acoustic wave speed and the entropy wave speed is ~= = 1 + ~ ~ ~ f o r  M --+ O, 

the problem is ill-conditioned for low Mach numbers M. To overcome this problem 
several methods have been proposed. The wave speeds can be made nearly equal by 
preconditioning the time derivative of the Euler equations [1],[2]. Thus, the steady 
state can be reached faster and is not affected by the choice of the preconditioning. 
The basic idea of flux vector splitting is to identify the "good" non-stiff and the 
"bad" stiff parts and treat them separately in space and time [3],[4]. 

We have tested the Roe scheme in a node-centered finite volume formulation 
either without or with Turkel's or van Leer-Lee-Roe's precondioning for low Mach 
number quasi 1D nozzle flow. For the same test case, we have investigated a flux vec- 
tor splitting derived from Abarbanel-Duth-Gottlieb and and a simple convection- 
pressure splitting. 

2 Quasi 1D Euler Equat ions  

To investigate the accuracy of low Mach number simulations we consider the quasi 
1D Euler equations for inviscid flow through a Laval nozzle with cross-section A(x): 

(UA)~ + (FA)= = Q (1) 

where U = (p, pu, p E )  T is the vector of the conservative variables. F = (pu, pu ~ -4- 
p, p u l l )  T is the flux vector, and Q OA T = (0,p-g~, 0) is the source term due to varying 
cross sections. Perfect gas is assumed with 7 = 1.4. 

As initial conditions, we choose stagnant flow equal to reservoir conditions Uo, 
except for the outlet pressure, which is set to the ambient pressure pe and kept fixed. 
Since we are interested in the steady state solution, the inlet boundary conditions 
are: total enthalpy H and entropy fixed at reservoir conditions. 
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3 P r e c o n d i t i o n i n g  

The condition number ~ of the Jacobian matrix OF is given by the ratio ~+~ To 
1 5  " 

eliminate the ill-conditioning for M --+ 0 the time derivative in (1) should be mul- 
tiplied by a preconditioning matrix P,  such that  -1 OF ~(P ~-U) becomes close to one. 
Then, the hyperbolic system 

PUt  + F= = 0 (2) 

will have wave speeds, which are nearly equal, and the stiffness of the 1D Euler 
equations for low Mach numbers is removed. 

In the simplest case of Turkel's preconditioning for low Mach number flow [1], 
the acoustic waves are slowed down by multiplying the pressure time derivative in 
the non-conservative energy equation by ~-~2, from which P can be derived. Choosing 
f12 2u 2, the condition number of p-1  OF = -- Tff is 2 + O ( M 2 ) .  In our investigation, the 
local evaluation of the preconditioning parameter f12 = 2u 2 led to disaster, whereas 
the global evaluation with f12 2 = 2urn, * worked well. 

In van Leer-Lee--Roe's preconditioning [2], each wave is moved with its charac- 
teristic speed. Thus, the optimal local condition number of one is attained. 

4 F l u x  V e c t o r  S p l i t t i n g  o f  A b a r b a n e l  e t  a l .  

The idea of flux vector splitting is to identify the non-stiff and stiff parts of the flux 
vector and treat them separately: 

F = (F - S) + S (3) 

The stiff part S is chosen such that  the condition number of 0(F-S) is close to one. OU Os ~(~-ff) will be large for low Mach number flow. 
Formulating Abarbanel-Duth-Gottl ieb 's  non-conservative splitting based on en- 

tropy variables in conservative form we obtained a flux vector splitting (3) [4] with 

s = (4) 
7 

where Co is the reference speed of sound. The splitting can be obtained by expressing 
the pressure p by c2p/7  and splitting c 2 into (c ~ - Co 2) + Co s. 

In a first approach, we solve the quasi 1D Euler equations using time-splitting. 
We discretize the two time split equations using a node-centered finite volume ap- 
proach. For the first equation we choose the explicit Euler scheme. The numerical 
fluxes at the cell interfaces are evaluated by the Roe scheme using the eigenval- 
ues and eigenvectors of the Abarbanel matrices, not those of the split-Jacobians. 
Because of the special structure of the second equation, it can be easily solved im- 
plicitly by integrating its second and third components in this order. More than 
that,  the integration can be done this way without the splitting as a semi-implicit 
scheme. The stiff part is second-order central differenced. 
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5 C o n v e c t i o n - P r e s s u r e  S p l i t t i n g  

For the convection-pressure splitting the stiff part in (3) reads: 

s=(0,p,0) T (5) 

It has been used by Rubin to solve the Reduced Navier-Stokes equations [5]. Since 
the Jacobian matrices of the non-stiff and stiff parts have positive and non-positive 
eigenvalues, respectively, for u > 0, convection and pressure are discretized upwind 
and downwind, respectively. Using time-splitting, we obtained for the 1D Euler 
equations what we termed 'p-downwind' scheme (a source term would be treated 
in the second step): 

C,, "'[ l, (F  - S ) ~ '  - (F  - S )n_ l ]  

J 
(6) 

A linear stability analysis for M = 0.1 indicates that the p-downwind scheme has 
a stability limit of C F L  <_ 0.965, whereas the explicit Euler scheme applied to the 
convection-pressure split equations requires C F L  < 0.1 [4]. To understand the rea- 
son for the higher stability of the p-downwind scheme, we linearize the intermediate 
pressure/5 for isentropic flow (omitting superscript n): 15~ ---- pl + ~p At~i. Inserting 

r,J C2~[ the residual of the continuity equation, we obtain/51 = pi - i ~ x ~ p u i  - -  PUi -1 ) .  

Inserting this relation in the second time split equation (6) the comparison with 
the unsplit scheme shows that the time splitting error introduces a second-order 
numerical dissipation in the momentum equation. 

When solving the convection-pressure split equations by the implicit Euler scheme, 
the explicit part is discretized second-order in space using flux extrapolation. Since 
the implicit part is treated first-order in space, underrelaxation is employed. For 
fast convergence to the steady state, it is necessary to use implicit characteristic 
boundary conditions and to make sure that the physical boundary conditions are 
not violated by linearization. 

6 R e s u l t s  

The following figures were calculated for a Laval nozzle with A ( x )  = (7 - 3 c o s ( ( x  - 

~)2~r)/40 for 0 < x _< 1 and A ( x )  = (5 - c o s ( ( x  - ½)27r)/40 for ~ _< x _< 1 using 
100 equidistant points. P d P o  = 0.99 leads to M,,in ~ 0.07 and M,~= ~ 0.18. The 
source term Q in (1) is discretized pointwise. Either the explicit or implicit Euler 
scheme is employed in time. The explicit Roe scheme preconditioned by [1] or [2] 
and the semi-implicit flux vector splitting derived from [3] converge only slightly 
faster than the explicit Roe scheme using characteristic boundary conditions. With 
fixed boundary conditions, characteristic time stepping [2] is only about 2 times 
more efficient than local time stepping. 

The first-order flux vector splittings are about equally accurate and more accu- 
rate than the first-order Roe scheme (Fig. 1). The error in pressure is measured 
by II (P - Pe=~c,)/(Po - P~=~c,) 112. The wiggles of the error at the boundaries when 
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using (4) indicate typical problems of time splitting with the intermediate bound- 
ary conditions. The second--order p-downwind scheme is more accurate than the 
second-order Roe scheme (Fig. 2). However, the second-order ), - scheme of Moretti 
is even more accurate [6]. Since Roe's scheme and the one derived from [31 evaluate 
the fluxes in a similar way, they produce qualitatively the same error in total  en- 
thalpy, whereas the p-downwind scheme yields the exact constant value much more 
accurately (Fig. 3). The mass flux error is smallest for the flux vector splittings 
and largest for Roe. 

For the explicit first-order schemes, about 10'000 time steps are required to reach 
the steady state, and twice as many for the second-order schemes, because the CFL 
number has to be halved. Using the implicit scheme, steady state is reached in 
about 50 time steps (Fig. 4). The CFL number is ramped from 100 to 2000 in the 
first 20 time steps. 

7 C o n c l u s i o n s  

We tested five explicit methods to solve the quasi 1D Euler equations for compress- 
ible low Mach number flow through a Laved nozzle. All of them converge similarly 
slowly to the steady state, although at least the preconditioning methods and the 
semi-implicit flux vector splitting were expected to perform better. The reason is 
probably due to the use of reflecting boundary conditions. For low Mach number 
flow, the error in pressure of the flux vector splitting methods is lower than that  of 
Roe's scheme. 

Although about five times more costly per time step, the implicit Euler scheme 
with underrelaxation and proper implicit boundary treatment is about 100 times 
more efficient than the explicit Euler scheme, when applied to convection-pressure 
splitting or Roe's scheme even without preconditioning. Because of its accuracy and 
simplicity, we plan to test the convection-pressure splitting in 2D. 
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A THREE-DIMENSIONAL PRESSURE FLUX-SPLIT RNS FORMULATION: 
APPLICATION TO SUBSONIC/SUPERSONIC FLOW IN INLETS AND DUCTS 

H.S. Pordal, S.G. Rubin and P.K. Khosla 

Department of Aerospace Engineering and Engineering Mechanics 
University of Cincinnati 
Cincinnati, Ohio 45221 

Introduction 

In a series of papers, see e.g., [1,2], the present authors have developed a primitive 
variable formulation for the computation of large Reynolds number (Re) flows with 
viscous-inviscid interaction. It has been shown that for a significant class of such flows 
the dominant flow physics can be accurately represented by an asymptotic 
approximation, viz., a reduced Navier-Stokes (RNS) system plus a deferred corrector 
(DC) that includes all higher-order diffusion terms, to the full Navier-Stokes (NS) 
equations. This formulation clarifies the role of both surface and farfield boundary 
conditions and is applicable for flows with moderate regions of axial and secondary flow 
reversal, for sharp capturing of strong shock waves and contact discontinuities, and for 
both steady and transient behavior. 

The lowest-order RNS approximation consists of the full Euler equations plus all 
boundary layer diffusion terms. All acoustic influences contained in the NS equations 
are retained, and, therefore, the RNS system allows for upstream or elliptic influence. A 
pressure-based form of flux-vector splitting is considered. This allows for direct solver, 
factored or relaxation techniques. For the latter a global relaxation procedure for the 
pressure, and for velocities in reverse flow regions, results. This form of flux-splitting is 
quite different from more conventional characteristic-based methods [2]. Specifically, 
the convective and acoustic fluxes are treated 'independently'. Therefore, the appropriate 
domain of dependence, or the upstream influence, is automatically represented by the 
discrete form of the acoustic and convective gradients. 

In the present study, this procedure has been further developed for three-dimensional 
configurations. For the RNS solutions of reference [3], full cross flow diffusion has been 
retained in the axial and azimuthal momentum equations, and, central differencing was 
specified for the discretization of the azimuthal convective terms. This technique has 
been found to be quite suitable for external flow geometries, for low speed flow, and for 
supersonic flow, wherein the crossflow Mach number is small. For high speed flows with 
strong oblique shocks, that are associated with supersonic crossflow, and for generalized 
application to internal and external geometries, the RNS discretization has now been 
updated, so that the secondary flow momentum equations retain only the lowest-order 
crossflow 07,~') diffusion terms, that are required to satisfy no slip surface conditions. 
The higher-order terms are included in the DC. This allows for mid-point discretization 
that more appropriately represents the secondary flow physics. As in two-dimensions, 
explicit artificial viscosity is not required, in any coordinate direction, with pressure- 
based flux-splitting. The inherent numerical viscosity is sufficient to capture strong 
shocks, and this can be minimized on t'me meshes. 
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Discretization 

The present investigation is concerned with the extension of the pressure based flux- 
split, RNS + DC, formulation to more complex applications and three-dimensional flows. 
The objective is to develop a discrete system that is founded on (1) pressure-based flux- 
splitting for the axial (~) gradients, (2) grid line or cell centering, in one or both of the 
secondary coordinate (~,~') directions, i.e., a trapezoidal or 'box' concept for equations 
that do not introduce diffusion terms in the lowest order RNS system, (3) central 
differences for directions in which diffusion does appear in the lowest order RNS system, 
and (4) in regions where secondary flow shocks occur, the equations are grid point 
centered in ~ or ~" or both directions, depending on the shock orientation, and pressure- 
based form of flux-vector splitting is applied in that direction. This allows for accurate 
shock capturing in (~,~/) and/or (~,~') planes. For shockless regions, the discretization 
pattern is shown in fig. 1. 

As with the two-dimensional system [4,5], the trapezoidal or box-like discretization 
is such that surface boundary conditions are required only for the velocities and 
temperature; the surface pressure is determined by the solver with this discrete 
prescription. Also, for positive outflow velocity, an outflow boundary condition is 
required only for the pressure or pressure gradient, as appropriate. For external flow, far 
field conditions are specified only for the axial and azimuthal velocities, pressure and 
temperature. The normal component of velocity is determined from the discrete 
continuity equation. This allows for efficient application of a segmented domain 
decomposition multi-grid technique, that conserves all flow properties at cell interfaces 
[7]. 

Solution Procedure 

A global relaxation procedure that involves the computation of all flow variables on 
successive (in ~) crossplanes is applied. The pressure, and velocities in reversed flow 
regions, is updated in subsequent steps. For purely supersonic flows, the solution is 
obtained in a single marching step. When the negative flux contributions to the pressure 
gradient are omitted, a PNS methodology is recovered for attached flows. For reverse 
flows, the negative fluxes contribute in recirculation regions. 

The algebraic crossplane equations are solved by a sparse-matrix direct solver. The 
choice of solution algorithm is dictated by considerations of robustness and consistency. 
In two dimensions, the direct solver has allowed for the solution of complex flow 
problems, where iterative techniques fail [4,5]. For example, the computation of 
transient flow in a supersonic inlet leads to an accurate description of unstart and restart 
phenomena. High speed moving shocks and high frequency transient shock-boundary 
layer interaction leads to a complex flow pattern that could be captured only with the 
direct solver. In addition, for two-dimensional steady problems, the direct solver, which 
introduces downstream boundary conditions immediately, is competitive, in terms of 
computational times, with relaxation methods. A simple domain decomposition strategy 
that allows for the use of the direct solver in small blocks around shocks and 
recirculation regions, and applies line relaxation elsewhere, has also been very effective. 

Straightforward application of a direct solver to three-dimensions, even if only in a 
planar relaxation mode, can be computationally expensive. A more efficient application 
strategy has been developed. The uniformity of the coefficients in the equations at 
neighboring crossplanes allows for a reduction in the number of LU decompositions that 
are required for the direct solver inversion. During the marching process, the LU 
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decomposition is frozen for several successive crossplanes, with the residuals iterated to a 
prescribed tolerance. This process only requires inexpensive repeated use of back 
substitution. When the number of iterations required to zero out the planar residual 
increases above a prescribed value, LU decomposition is again necessary [3]. When this 
technique degrades, e.g. in large regions of axial flow reversal, alternating direction 
planar relaxation can be applied to improve convergence. 

Results 

The three-dimensional RNS + DC, pressure-based flux split, direct/relaxation flow 
solver has been applied to compute flow fields with free-stream Mach numbers varying 
from low subsonic (incompressible) to transonic to supersonic. 

(i) Incompressible flow in a three dimensional channel (height h) with a back step 
height=-0.5h, at a laminar Reynolds number Re h of 133, is investigated. Figure 2 shows 
the velocity vectors in the XY plane at various Z locations. Three dimensional effects are 
significant only in the vicinity of the side walls, the central portion of the flow field is 
predominantly two " dimensional in nature. The velocity vectors and streamlines at the 
mid Z plane are depicted in fig. 3. A comparison of the separation length with earlier two 
dimensional calculations [6,7] show reasonable agreement. For larger Reh, three- 
dimensionality plays a more significant role [7]. 

(ii) Transonic flow in a converging-diverging, three-dimensional nozzle with a 
square cross-section is evaluated. The density contours (shown in fig. 4) at several XY 
planar locations depict a sharp three-dimensional 'normal' shock pattern that lies very 
close to the inlet throat. The location is consistent with that predicted by quasi-one- 
dimensional theory. 

(iii) Three-dimensional turbulent flow, at unit Reynolds number 1.1xl06 per inch, 
along a symmetric comer formed by two intersecting wedges at a Math number of three 
is considered. A transition location obtained from the experimental data [8] is included. 
Comer flows are characterized by strong three-dimensional inviscid-viscous interactions. 
The oblique shock generated by the one surface interacts with the boundary layer of the 
other surface and a secondary 'normal' shock forms. This generates a strong 
shock-boundary layer interaction. To capture the three-dimensional intersecting shock 
pattern, pressure-based flux-splitting as described previously is specified in all three 
coordinate directions. Density contours at various axial locations are shown in fig. 5. 
These compare well with the experimental data [8]. Detailed density contours at X=I. 
are depicted in fig. 6; once again comparison with the experimental data is good. The 
shock location is reasonably well predicted. The surface pressure distribution is 
compared with the experimental data in fig. 7. Although the shock location is reasonably 
well predicted, the surface pressure at the corner is somewhat lower than the data for the 
coarsegrid in the boundary layer near the leading edge. 

(iv) Preliminary results of computations for the pressure distribution on the 
centerbody of a NASA P2 inlet are shown in fig. 8. These are in good agreement with 
the data of reference [9], even though the tunnel conditions are highly non-uniform and it 
is difficult to obtain an exact set of inflow and upper boundary values. Comparisons on 
the cowl surface are not in good agreement. This problem has been observed by others 
in earlier studies of similar geometries. The Mach number distribution downstream of 
the throat is shown in fig. 9. The captured shocks are quite good and the qualitative 
behavior is in agreement with the data. 
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A N  I M P R O V E D  W A V E  M O D E L  F O R  M U L T I D I M E N S I O N A L  
U P W I N D I N G  O F  T H E  E U L E R  E Q U A T I O N S  

P.L. R o e  a n d  Lisa  B e a r d  

Department of Aerospace Engineering 
University of Michigan 

I N T R O D U C T I O N  

An essential element in the development of the truly multidimensional upwind 
schemes reviewed by Bram van Leer in these proceedings (see also [1]) is the reduc- 
tion, in each computational cell, of the Euler equations to a set of independent scalar 
problems. In one dimension the difference of two succesive nodal states u j+l - uj can 
be projected onto the eigenvectors of the local Jacobian matrix to produce a unique 
decomposition into simple waves, whose effects can be treated separately in the nu- 
merics. In n dimensions, n independent differences along the edges of a simplicial 
element define a linear variation of the fluid state within that  element. However, the 
decomposition into simple waves is not now unique because such waves can have in- 
finitely many orientations. The contribution made in this paper is to view the problem 
as one of kinematic analysis. This leads to a particularly natural decomposition. 

A N A L Y S I S  

Consider a region of space, filled with fluid, and small enough that all fluid properties 
can be taken to vary linearly within it. The gradients of the primitive variables can 
be assembled into a 5 × 3 matrix, thus; 

P= 
Ux 

p ~  --~ V x 

W x  

p= 

Py Pz  

Uy Uz 

Vy V z 

Wy  W z 

Py P~ 

(1) 

A "wave model" for this region will be defined as a set of plane waves, each satisfying 
the Euler equations, whose superposition will reproduce all the elements of (1). 

The central block of nine terms in (1), 

[ u = u y u ~ ]  
D =  v= vy v~ . (2) 

W x W y  W z 

is known as the 'deformation tensor' [2]. A geometric interpretation of this tensor is 
that a set of fluid particles initially lying on the surface of a sphere with radius dr 
will, after a short t ime dr, be found on the surface of an ellipsoid, whose equation is 

xT[I -- (D + DT)dt]x = (dr) 2. (3) 

135 



z z 

Figure 1: A fluid element before (left) and after (right) an infinitesimal distortion. 

This ellipsoid depends only on the symmetr ic  part  S = I ( D  + D T) of D. The anti- 
symmetr ic  part  A -- I ( D  - D T) of D, represents a rotation, and to first order does 
not affect the shape or the orientation of the ellipsoid. It is usual to conduct kinematic 
analyses in the (orthogonal) coordinates defined by the principal axes of the ellipsoid. 
These axes can be found by noting that  they are the eigenvectors of the matr ix  S. In 
these axes the deformation tensor has a symmetr ic  part  that  is purely diagonal,i.e. 

D = S + A =  0 vy 0 + ~t, 0 - f t=  . 
0 0 w~ - f l y  fl= 0 

where the {ftl} are components of vorticity, 

1 1 1 

(4) 

Note that  the velocities are now also measured in the principal axis system. The 
axes can always be  l~belled to form a right-handed system such that  u= _> vy >_ wz. 

Each simple wave that  might be proposed as an element of the wave model has 
an associated deformation tensor. We will only include waves having a deformation 
tensor of the correct form; those having no off-diagonal terms in their symmetric  
part.  For example,  any acoustic wave produces a deformation tensor that  is purely 
symmetric,  but the only cases without off-diagonal terms are [lOO] [ooi] [oo!] 

0 0 0  , 0 1  , 0 0  
0 0 0  0 0  0 0  

(5) 

which represent waves propagating along one of the principal axes. 
The deformation tensor for a shear wave is always trace-free. It  can be shown that  

the only cases with symmetr ic  parts that  are diagonal are [1_1o] [_1_1o] [,o ,] 
1 - 1 0  , 1 1 0  , 0 0  0 , 

0 0 0 0 0 0 - 1  0 - 1  
(6) [_1o11 [oo o] [ooo] 

0 0 0 , 0 1 ~-1 , 0 - 1  - 1  . 
- 1  0 1 0 1 - 1  0 1 1 
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Figure 2: Patterns of deformation due to simple waves in two dimensions 

In each of these cases, the planes in which the velocity is constant bisect some pair of 
coordinate directions. 

The situation is most easily visualised in two dimensions. Figure 2 shows the 
deformation patterns corresponding to the four simple wave tensors that  align with 
the principal axes. In (a) the deformation is due to an acoustic wave travelling in either 
the positive or negative x-direction, in (b) i t  is due to an acoustic wave travelling in 
the y-direction. In (c) and (d) the deformation is due to a shear wave, and we see 
that  two orientations for such a wave are possible. For only one of these is the x-axis 
the major  axis of the ellipse, as our convention assumes. The rule is that  for positive 
vorticity the shear wave lies in the first quadrant, and for negative vorticity (shown 
here) in the second quadrant. 

These considerations select, as candidates for the wave model, four acoustic waves 
and one shear wave. In three dimensions they select six acoustic waves and three shear 
waves. In fact, in n dimensions they select 2n acoustic waves and n(n - 1)/2 shear 
waves. Since linear variation of n velocity components, together with pressure and 
density, yields n ( n+2 )  pieces of information, of which n ( n -  1)/2 are used to orient the 
principal axes, this leaves n degrees of freedom unaccounted for. These are precisely 
the number required to specify a single entropy wave, and the n - 1 components of 
its unit normal; these degrees of freedom are simply omitted in considering isentropic 
flow. 

For the full three-dimensional Euler equations, the waves strengths are determined 
from 

P= Py P~ 
u= -~2, fly 
~ z  vy --flz ~ ± 4- : otaedTac,j -1- ~ ~jTrot,j n t- Ten. (7) 

--~y flz wz j=z,y,z .i==,y,z 

P= P~ Pz 

Typical examples of the tensors appearing on the right are 
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:t: 

+ p  0 
a 0 

O 0 

0 0 
+pa  2 0 

0 
0 
0 , 
0 
0 

Trot,~g 

0 0 
0 0 
0 1 
0 1 
0 0 

0 
0 

- - 1  , 

- 1  
0 

T~. = 

8x  Sy 

0 0 
0 0 
0 0 
0 0 

where sj  = pj - p j / a  ~. The strengths of the acoustic waves are given by 

aac'Y = vy - + I 1= + , pa j  

,[ 
a,c,, - 2a w, + I 1= + I 1, + pz • 

,5 z 

0 
0 , 
0 
O 

This model differs from the author's earlier proposals [3] by incorporating rota- 
tional effects more neatly. There, one version left the vorticity as a isotropic effect, 
providing no clue how to model its convection, whereas another oriented the shear 
wave with ~he particle path, which is only valid for steady flow. A subsequent version 
[4] oriented the shear normal to the pressure gradient, which is no help if there is 
no pressure gradient. Computational experience to date is that  codes based on the 
present model are much more likely to converge in a satisfactory manner, although 
other aspects such as boundary conditions are also influential. 

IMPLEMENTATION 

The model can be applied to the conservative form of the Euler equations by means 
of a local linearisation within each element. The particular linearisation described 
in [5] ensures a conservation property that guarantees correct shock capturing. The 
individual waves are updated in scalar fashion using the 'NN' scheme described in [6]. 
For scalar problems the order of accuracy of this scheme appears to be about 1.6 [7]. 
Three-dimensional versions of these schemes are reported in [8]. 

We have not yet a t tempted any elaborate calculations using the method, although 
it performs well on a variety of standard two-dimensional tests, such as the ramp flow 
shown in Figure 3. Since some of the justification for following this line of research 
comes from a dissatisfaction with current Navier-Stokes solvers, the performance of 
the scheme on isolated shear waves is of particular interest. Figure 4 shows results 
for the shear wave separating flows at Mach 2.5 and 2.0 on a 30×30 mesh. When the 
flow direction is aligned with any of the diagonals in the mesh shown, the numerical 
solution, which is observed to be stable against large perturbations, spans just two 
mesh intervals, and does not grow away from the inflow boundary. The worst case is 
when the flow direction roughly bisects a pair of mesh directions. Before leaving the 
domain the shear spreads over about six intervals, although the results are distinctly 
better  than most grid-aligned upwind schemes. 

138 



! ! | ! 

! 

1.00 

-1.00 0.00 1.00 2.00 

Figure 3: Pressure contours for flow over a ramp in a windtunnel. The calculation uses a 
20x60 mesh. 

0.00 

/ \ /)  
\ / \  

\ / \  
/ \ /  

o J  e4e  oao 

Figure 4: Mach number contours for shear waves at angles of 45 ° and 22.5 ° to the mesh. 

FUTURE DEVELOPMENTS 

These results suggest some interesting speculation about the practical use of these 
ideas. Although the directional properties of the grid have been virtually removed 
from the wave recognition discussed above, they are still present, perhaps inevitably, 
in the numerical update, especially for linearly degenerate waves such as shear waves 
and contacts. They can be minimised by choosing a grid having a sufficient number 
of edges aligned with the streamlines, or perhaps, for unsteady flows, with other wave 
fronts. This suggests new ways to assess the quality of adaptive grids, particularly 
unstructured ones, although we have only recently begun to explore this area. 
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G C - F C T  : A F U L L Y  M U L T I D I M E N S I O N A L  F C T  A L G O R I T H M  F O R  
G E N E R A L  C U R V I L I N A R  C O O R D I N A T E S  

A. R o m p t e a u x  J.L. Estivalezes 

ONERA-CERT-DERMES 2 Av Belin 31055 Toulouse FRANCE 

1 I n t r o d u c t i o n  

Since the seventies, high resolution FCT algorithms have been widely used to simulate 
highly transient compressible flows [1] as well as instabilities, turbulence [2] and com- 
bustion phenomena in cartesian geometries. All those calculations are based on one 
dimensional fourth order phase accurate FCT algorithm designed by Boris and Book 
[3]. Multidimensional problems are treated with time-step and directional splitting. 
A finite dement  version of FCT algorithm has been developped by L5hner and al. [4] 
for arbitrary triangular unstructured meshes. In this paper we propose a finite vol- 
ume application of the multidimensional approach of Zalesak [5] to general curvilinear 
structured finite volume meshes. 

2 N u m e r i c a l  r e s o l u t i o n  

2.1 Equations of the computed  flow 

The Euler equations can be written in the conservation form : 

OU (OF OG pu  F = p u u  + p G = p u v  
o~ + ~ + N = ° u =  pv pvu pvv + p (1) 

e eu  + p u  ev + p v  

Here p, p, e, u, v denote respectively the density, pressure, total energy, components 
of the fluid velocities in the direction x et y of a cartesian system. 

2.2 F C T  concept 

High resolution monotonicity preserving schemes must be developped in order to 
properly simulate strong non linear discontinuities present in flows under considera- 
tion. First, let us recall Zalesak generalisation of the one dimensional FCT scheme of 
Boris and Book, which can be considered as a truly multidimensioi~al high resolution 
scheme. We consider a set of conservation laws given by a system of Partial Differ- 
ential Equations like 1. The idea behind FCT is to combine a high order accurate 
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(dispersive - ripples) scheme with a low order (monotonic but spreading) scheme in 
such a way that  in regions where the variable under consideration varies smoothly, the 
high order scheme is used, whereas in the regions where the variable varies abruptly, 
the schemes are combined in a conservative way to assure a monotonic and accurate 
solution. In  an other way, FCT limits the amount of the antidiffusion fluxes in such 
a way thac no new over or undershoots are created. 

2 . 3  F i n i t e  v o l u m e  c o n s i d e r a t i o n  

We consider an arbitrary quadrilateral cell mesh. The variables are stored at the cell 
centres. The system of equations 1 is integrated over a cell ~i,j : 

F 

By the Green formula, after spatial discretization, this equation is approximated by : 

OQ _ 1 [&½,~  _ f,_½,~ + 4 , j+~  - O,,j_~] (a) 
Ot & j  

where S~,N is the cell area and _P and G are the contravariant fluxes defined by : 

~+½,j = +F~+½,j yn,+} - G{+½, j x,,+½ and Gi,j+½ = -Fi,j+½ Y¢~+½ + Gi,j+½ x~j+½ (4) 

2 . 4  G e n e r a l  C u r v i l i n e a r  F l u x  C o r r e c t e d  T r a n s p o r t  

Zalesak [5] proposed a new formulation of the monodimensional algorithm of Boris and 
Book which generalizes easily to multidimensions. His aim was to deal with problems 
where time-splitting technics (used to compute multidimensional phenomena with a 
monodimensional algorithm) may produce unacceptable numerical results. Here [6], 
we apply this approach to a curvilinear mesh (non orthogonal) via a finite volume 
method (LShner [4] uses it in a finite element code). 

FCT algorithm can be decomposed in the following steps [5] : 

• Compute fluxes by the monotonic scheme (first order):  ~L½,j and ~Lj+½. 

• Compute fluxes by a second order scheme: F/H½,j and GH+½. 

• Compute antidiffusive fluxes by difference : 

AFi+½,j : <H++½,j _ ~L+½,j and AGi,j+ ½ : OH+½ - GL,+½ 

• Compute a transported and diffused solution : 

dt %L Q.7 : Q O _ s 7  [<~+½,J - < % '  + G~,~+½ - %_~]  (5) 

• Limit the antidiffusive fluxes : 

A<c+},j = Ci+},y x A<+I , j  and AGCj+~ = C{,j+½ × AGe,j+½ 

where Ci+½, j and Ci,j+½ are dimensionless scalar coefficients calculated to avoid 
apparition of new extrema of p. 
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• Compute the new solution : 

Q'% : s ,j A< ½,j - 

AFiC_½,j + AG~j+½ - AG~j_}] (6) 

The limitation procedure of Zalesak (calculated in step 5) is obtained by compu- 
tation of the worst situation which can happen to p in the sixth step of the above 
algorithm. So we compute : 

Pi+j = max(O, AF/L½ j) - min(O, AF/+½j) + max(O, AG~,d_}) - min(O, AG~j+}) 
Pij  = max(O, AFi+}',j ) min(O, AF/I_},j) + max(O, AG~j+}) - rain(O, AGSj ½) 

(7) 
where Pi + (resp. Pi~) represent the maximum (resp. minimum) antidiffusive fluxes 
which come in (resp. out) cell ( i , j ) .  A F  1 and AG 1 represent the first component of 
the vectors A F  and AG. Then we evaluate the maximum amount we can gain (resp. 
loss) in the considered cell and the maximum fraction of antidiffusive fluxes we can 
gain (resp. loss) in cell (i, j )  without producing overshoot (resp. undershoot) : 

,,, ( )s,,j R*. M,+IP,+ : P i , j  - -  P i , j  ,,,7 ' 

M~ 5 ( p~,jTD _ a,j-m )Si,j R~,~ rain , M~7/p~5) (S) 

To obtain the scalar coefficients C, we tinily test the sign of the considered antidiffu- 
sive flux and prevent it from producing an undershoot (in the cell it goes out) or an 
overshoot (in the cell it goes in) : 

min/R++I .,R~.. 
C i + } ,J = ,J ,3 

min R+j, R~-+I,j 

i f  AF~+½j >_ 0 
(9) 

i f  AFI+½j < 0 

The choice we made here for the maximum and minimum values that appear in 
[ T D  T D  T D  T D  T D  "~ m equation (8) is A, M = max ~Pi-l,j, Pi,j , Pi+l,j, Pi,j-1, , O i , j + l )  and similar for Pi,j, but 

many others are possible. 

2 . 5  A p p l i c a t i o n  t o  t h e  E u l e r  e q u a t i o n s  

We still need to express the high and low order fluxes. Here we select a second order 
centered scheme or a Mac Cormack scheme for the high order. At the moment, tests 
with high order MUSCL [7] versions of Van Leer Flux Splitting are under progress. 
For the low order scheme we use a generalisation to multidimensional of the low order 
scheme of the original Boris and Book algorithm or a first order Van Leer approach. 
Second order temporal accuracy is implemented by a Runge-Kutta 2 method. 

To improve the calculation of the limited antidiffusive fluxes, we first limit them in 
each direction, and then apply the fully multidimensional limiters to these fluxes (cf 
Zalesak [5]). As recommended by L6hner [4], it seems important to introduce "system 
character" in the limiters by combining them for all equations of the system. For the 
Euler case, we choose (after numerical experiments) to apply to the four equations, 
the limiter obtained for the density to synchronize antidiffusive fluxes. 

A high level of vectorization has been achieved on this code : a performance of 
5 #s/ t imestep/point  is obtained on a CRAY XMPll6. The repartition of the CPU 
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time during a calculation is described in [6] and illustrates the important  part of 
the limitation process - 40% - compared to the time spent in the "flux" subroutine 
(evaluation of the high order, low order and antidiffusive fluxes) - 25% - and the 
"calcul" one (application of the different flux balances) - 25% -. We can also note the 
high speed of these routines (other 100 Mflops) and the tiny contribution (less than 
5%) of the input-output  and boundary conditions application. 

3 N u m e r i c a l  re su l t s  

Shock  wave  d i f f r ac t i on  f r o m  an  obs t ac l e  : This test case was proposed by Yee 
[8] and is studied here to evaluate the capability of the curvilinear scheme to treat 
with strong shocks. This is a complex flow presenting both supersonic and subsonic 
zones, steady and unsteady shocks. Our results agree very well with Yee's calculations 
(with various TVD schemes) on a comparable mesh of 320 x 96 cells. We present the 
density contours at different time steps on figure 1. The three-shock system which 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : : . . . . . . . . . . . . . . . . . . . . . . . . . .  i . . . . . . . . . . . . . . . . . . . . .  : : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  

Figure 1: Time evolution of isopycnics 

appear when the incident shock impacts the obstacle, is well predicted and a new one 
begins to form on the last image when the Mach shock reaches the end of the obstacle. 
One can see a good capture of all the shocks even through curvilinear mesh. This case 
has also been used [6] to compare the solutions obtained with different choices for low 
and high order schemes. Only little differences in the quality of the simulation were 
noticed (if the low order scheme remain monotonic) although the CPU cost increase 
lastly with the complexity of these schemes. 

S h o c k  wave  d i f f r ac t i on  f r o m  a c y l i n d e r  : This test case uses the same 
Mach number as Yang [9] for the unsteady shock. It permits also comparisons with 
experimental schlieren. The time evolution of the density contours is presented on 

Figure 2: Time evolution of isopycnics 

figure 2 and shows a good simulation of all the physical phenomena except the complex 
viscous effects (last image) which appear in the wake on the experimental results. 
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Transonic  flow over a circular cyl inder  : This case was proposed for a 
Workshop [10] in 1986. The time evolution of the pressure contours is presented on 
figure 3 and is similar to the results of Pandolfi and al.. Although initial and boundary 

Figure 3: Time evolution of iso-pressure 

conditions are symetric, the flow naturely loses this symetry and leads to a perfectly 
unsteady periodic solution. 

4 C o n c l u s i o n  

An application of FCT algorithm to arbitrary geometries via a finite volume formula- 
tion has been presented. It uses the multidimensional approach proposed by Zalesak 
and the influence of the different schemes to use has been studied. Numerical ex- 
amples show sharp shock capturing and well predicted physics. A fully vectorized 
and optimized code has been developped for use with a supercomputer. Points under 
progress are Navier-Stokes and axisymetric equations. 
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INTRODUCTION 
The unders tanding  of  t rans i t ion  to  turbulence in compress ib le  boundary 

layers is r a the r  poor.  As for  incompressible  flows, the f i r s t  s tage of  the t r an -  
si t ion process  is adequately descr ibed by linear s tabi l i ty  theory,  if the back-  
ground dis turbance  level is very small .  In deta i led  surveys Mack El, 2] reviewed 
the compress ib le  l inear s tabi l i ty  theory and discussed its role  with respec t  to  
t rans i t ion  in compress ib le  boundary layers.  For the subsequent  nonl inear  s tages  
there is no guidance f rom experiments .  Transi t ion exper iments  are very d i f f icul t  
to  perform,  and mos t  of  the few exper iments  for  con t ro l l ed  d is turbances  were 
re la ted  to  the initial  l inear regime of  d is turbance development .  For the t ime being, 
it  is assumed tha t  t rans i t ion  evolves through similar  s tages  as in incompress ib le  
f lows.  Only recently,  theore t ica l  resu l t s  concerning the initial th ree-d imens iona l  
development  became available based  on compress ib le  secondary ins tabi l i ty  theory 
(see [3, 4] for  example).  But whether  these  secondary ins tabi l i ty  mechanisms 
represen t  relevant  mechanisms at  low supersonic Mach numbers,  where according 
to  l inear  s tabi l i ty  theory the mos t  unstable  d is turbances  are three-d imensional ,  
is unknown. To answer  this  quest ion deta i led exper imenta l  invest igat ions  are 
required preferable  in combinat ion with numer ica l / theore t i ca l  s tudies .  

In this  paper,  we repor t  on numerical  invest igat ions of  poss ib le  routes  to  
turbulence  in compress ib le  f l a t - p l a t e  boundary layers a t  low supersonic  Mach 
numbers.  Resul ts  f rom direct  spat ia l  s imulat ions  for  a new type of  breakdown 
to  turbulence  at  Mo0:1.6, ini t iated by only a pair of  oblique d is turbance  waves, 
are p resen ted  tha t  demons t ra te  the development  of  "honeycomb"-l ike structure.~ 
( instead of  s taggered  or  al igned lambda-vor t ices  arising f rom secondary ins tabi -  
lity) which were not  observed before in o the r  invest igat ions.  

NUMERICAL MODEL 
The numerical  method is based  on a "spatial" model. As shown in Fig. 1, a 

finite rec tangula r  box is se lec ted  to  represent  a cer ta in  region of  a boundary - l aye r  
f low on a f l a t  p la te  extending from X:Xo to x : x  N in the s t reamwise  direction.  In 
the normal  direct ion,  the in tegra t ion  domain extends  f rom y:O to  Y:YM and typi -  
cal ly covers several  bounda ry - l aye r  th icknesses .  In the spanwise direction,  the 
f low is assumed to  be periodic with the domain extending f rom z:O to Z:kz,  
where kz is the wavelength in z-direct ion.  2-D and 3-D dis turbance  waves with 
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z0 z l  z~ z 

Fig. 1: I n t e g r a t i o n  domain  and 
d i s t u r b a n c e  s t r i p  

p r e s c r i b e d  f r equency  and a m p l i t u d e  
a re  i n t r o d u c e d  in to  t he  d o m a i n  by 
per iod ic  b l o w i n g  and  s u c t i o n  t h r o u g h  
a n a r r o w  d i s t u r b a n c e  s t r i p  as  d i s c u s -  
s ed  in [5]. The s t r e a m w i s e  l i nea r  and  
non l inea r  e v o l u t i o n  o f  t h e s e  d i s t u r b -  
ances  are  c a l c u l a t e d  by so lv ing  the  
u n s t e a d y  3-D N a v i e r - S t o k e s  e q u a -  
t ions .  Thus  the  numer i ca l  m o d e l  can  
be  r e g a r d e d  as  a n u m e r i c a l  s i m u l a -  
t ion  o f  a " c o n t r o l l e d "  t r a n s i t i o n  e x -  
p e r i m e n t  in which  s o m e  s o r t  o f  a 
w a v e m a k e r  is u sed  to  g e n e r a t e  con -  
t r o l l e d  d i s t u r b a n c e  waves .  

The f l o w f i e l d  is d e s c r i b e d  by the  t h r e e - d i m e n s i o n a l  N a v i e r - S t o k e s  e q u a t i o n s ,  
the  con t i nu i t y  equa t ion ,  the  energy  equa t ion ,  and  the  t h e r m o d y n a m i c  equa t ion  o f  
s t a t e  f o r  a c o m p r e s s i b l e  p e r f e c t  gas.  The ve loc i ty  c o m p o n e n t s  u, v and  w in the  
x - ,  y -  and  z - d i r e c t i o n  are  made  d i m e n s i o n l e s s  us ing  the  f r e e - s t r e a m  ve loc i ty  U~o. 
Leng ths  are  n o n - d i m e n s i o n a l i z e d  wi th  r e s p e c t  to  a r e f e rence  l e n g t h  L. Refe rence  
va lues  fo r  the  t e m p e r a t u r e  T, v i scos i ty  p, conduc t iv i t y  &, and d e n s i t y  p are  t h e i r  
f r e e - s t r e a m  va lues  ( ind ica ted  by s u b s c r i p t  co). The p r e s s u r e  is n o r m a l i z e d  wi th  

2 2 and  the  i n t e rna l  energy  e wi th  Uco W i t h  t h e s e  de f in i t ions ,  t he  g l o b a l  Pco Uco, 
Reynolds  n u m b e r  is Re = ucoL~o /~00. We a s s u m e  a c a l o r i c a l l y  p e r f e c t  gas  wi th  
the  r a t i o  o f  spec i f i c  hea t s  ×=Cp/Cv =1.4. The P ra nd t l  number  Pr=~00Cp/&oo is 
a s s u m e d  c o n s t a n t  and  equa l  to  O.71, and  fo r  the  de pe nde nc e  o f  t he  v i s cos i t y  on  
the  t e m p e r a t u r e  ~=p(T) S u t h e r l a n d ' s  l aw is used .  Fo r  the  c a l c u l a t i o n s  d i s c u s s e d  
here  the  f r e e - s t r e a m  t empera ture  was Tco=3OOK and  the  g l o b a l  Reynolds  number  
was 10 s. The c a l c u l a t i o n s  were  p e r f o r m e d  on a Cray 2. 

For  the  b o u n d a r y  cond i t i ons  a t  the  in f low boundary ,  b o u n d a r y  l aye r  p r o f i l e s  
as  o b t a i n e d  f r o m  the  s o l u t i o n  o f  the  c o m p r e s s i b l e  b o u n d a r y  layer  equa t ions ,  a re  
used .  At  the  wal l ,  a l l  ve loc i ty  c o m p o n e n t s  a re  zero (excep t  fo r  v a t  t he  b l o w i n g  
and s u c t i o n  s t r ip ) .  For  the  t e m p e r a t u r e ,  ad iaba t i c  wa l l  cond i t i ons  a re  a s s u m e d  fo r  
the  b a s e  f low,  i.e. c)T/~y=O, while  fo r  t he  d i s t u r b a n c e  t e m p e r a t u r e  T '=O is a s s u -  
med  (in a g r e e m e n t  wi th  l inear  s t a b i l i t y  theory) .  A t  t he  o u t f l o w  bounda ry ,  l i nea r  
wave a s s u m p t i o n s  are  made  fo r  t he  d i s t u rbances .  At  the  f r e e - s t r e a m  bounda ry ,  
e x p o n e n t i a l  decay  o f  the  d i s t u r b a n c e s  is a s s u m e d ,  wi th  b o u n d a r y  c ond i t i ons  
de r ived  f rom c o m p r e s s i b l e  l inear  s t a b i l i t y  theo ry  [63. 

The gove rn ing  equa t ions  are  so lved  in conse rva t ive  fo rm.  The numer i ca l  
m e t h o d  t h a t  we deve loped  is a c o m b i n a t i o n  o f  f i n i t e - d i f f e r e n c e  a p p r o x i m a t i o n s  o f  
f o u r t h - o r d e r  accuracy  in the  x -  and  y - d i r e c t i o n s  and s p e c t r a l  a p p r o x i m a t i o n s  
(Four ier  modes )  in the  z - d i r e c t i o n .  The t ime  i n t e g r a t i o n  is fu l ly  e x p l i c i t  e m p l o y -  
ing a M a c C o r m a c k - t y p e  t ime  s t epp ing ,  which y ie lds  s econd  o r d e r  accuracy in t ime  
d i rec t ion .  The non l inea r  t e r m s  are  c o m p u t e d  in phys ica l  space .  Fo r  t r a n s f o r m i n g  
f rom s p e c t r a l  to  phys ica l  space  and vice ve r sa  h ighly  v e c t o r i z a b l e  FFT-rout ines  are  
e m p l o y e d .  A d e t a i l e d  d i s cus s ion  o f  the  numer ica l  m e t h o d  is given by T h u m m  [6]. 

The numer i ca l  m e t h o d  was careful ly  v a l i d a t e d  by ex t ens ive  c o m p a r i s o n s  
wi th  r e s u l t s  f r o m  c o m p r e s s i b l e  l inear  s t ab i l i t y  t h e o r y  E6], and  by c o m p a r i s o n  
wi th  non l inea r  s e c o n d a r y  i n s t ab i l i t y  behav iour  o f  i n c o m p r e s s i b l e  f l o w s  fo r  which  
the  code  was  run  a t  a l ow  Mach n u m b e r  M00--O.2 E7]. Recent ly ,  an  a dd i t i ona l  
va l ida t ion  o f  our code  has  been  prov ided  by Masad  and Nayfeh [8], who  c o m -  
p a r e d  the i r  r e s u l t s  f r o m  (subharmonic)  c o m p r e s s i b l e  s e c o n d a r y  s t a b i l i t y  t heo ry  
wi th  ou r  numer i ca l  r e s u l t s  [9], and  found  very g o o d  a g r e e m e n t .  
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NUMERICAL RESULTS 
In o r d e r  t o  i nves t i ga t e  the  ro l e  o f  s econda ry  i n s t a b i l i t y  m e c h a n i s m s ,  we have 

p e r f o r m e d  a l a rge  n u m b e r  o f  s i m u l a t i o n s ,  b o t h  fo r  s u b h a r m o n i c  and  f u n d a m e n t a l  
r e sonance ,  a t  Mach  n u m b e r s  0.4, 0.8 and 1.6. Resu l t s  o f  t h e s e  c a l c u l a t i o n s  were  
d i s c u s s e d  e l s e w h e r e  [6, 9], and  ind i ca t ed  t h a t  s e c o n d a r y  i n s t ab i l i t y  m i g h t  n o t  be 
a lways  the  r e l e v a n t  m e c h a n i s m  a t  l ow  supe r so n i c  Mach n u m b e r s ,  as  f a i r ly  h igh  
a m p l i t u d e s  o f  t he  2-D wave (U'2D~S~.) were  found  t o  be  n e c e s s a r y  t o  t u r n  on  
the  r e s o n a n c e  mechan i sm.  There fo re ,  we s t a r t e d  t o  s e a r c h  f o r  p o s s i b l e  o t h e r  
r o u t e s  t o  t u r b u l e n c e  in such  b o u n d a r y  layers .  Based  on  r e s u l t s  f r o m  c o m p r e s -  
s ib le  l i nea r  s t a b i l i t y  t h e o r y  we p e r f o r m e d  a s i m u l a t i o n  f o r  Mo0--1.6, whe re  the  
b o u n d a r y  l aye r  was  f o r c e d  by on ly  a pa i r  o f  3-D waves .  W e  o b s e r v e d  a s u r -  
p r i s ing  d e v e l o p m e n t  as  t h e s e  d i s t u r b a n c e s  qu ick ly  became  highly nonl inear .  

For  th i s  ca l cu l a t i on ,  the  i n t e g r a t i o n  doma in  e x t e n d e d  in t he  x -  and  y - d i r e c -  
t ions  f r o m  xo=O.S9S to  XN=8.87S, and  f r o m  y=O to  YM=O.12S. The s t e p  s izes  u sed  
were  Ax--0.OO926, Ay=O.O012S, and  &t=O.000697. The s p e c t r a l  a p p r o x i m a t i o n s  were  
t r u n c a t e d  a t  K=IS, i.e. 31 s p e c t r a l  m o d e s  were  used  fo r  the  d i s c r e t i z a t i o n  in s p a n -  
wise  d i r ec t ion .  At  t he  b l o w i n g  and suction s t r ip ,  only  a pa i r  o f  3-D d i s t u r b a n c e  
waves  wi th  f in i te  a m p l i t u d e  U'3D~l~, and  f r equency  FI ,  I=S.O were  i n t roduced .  
The s p a n w i s e  wave n u m b e r  was  X=2~/Xz=lO.6 c o r r e s p o n d i n g  to  a wave  ang le  
o f  ~ 4 5  °. Here,  the  3-D d i s t u r b a n c e  c o m p o n e n t s  are  d e n o t e d  as  m o d e s  (n, k) 
where  n s t a n d s  fo r  the  f r equency  as  the  i n t e g e r  m u l t i p l e s  o f  the  f u n d a m e n t a l  
f r equency  and  k d e n o t e s  the  m u l t i p l e s  o f  t he  spanwise  wave number. 

Resu l t s  o f  th i s  s i m u l a t i o n  are  s h o w n  in Figs.  2-S. In Fig. 2, t he  s t r e a m w i s e  
d e v e l o p m e n t  o f  the  m a x i m u m  value  o f  typ ica l  wave c o m p o n e n t s  fo r  the  u' d i s t u r b -  
ance ,  o b t a i n e d  f rom a Four i e r  ana lys i s  o f  the  t w e l f t h  t ime  p e r i o d ,  is p r e s e n t e d  
s e m i l o g a r i t h m i c a l l y .  In Fig. 2a, t he  u n s t e a d y  d i s t u r b a n c e  c o m p o n e n t s  u ' l ,k  (k=l-lS),  
and  in Fig. 2b the  s t e a d y  d i s t u r b a n c e  c o m p o n e n t s  U'o,k (k--O-14) a re  p l o t t e d .  Both  
f igures  s h o w  t h a t  h ighe r  ha rmon ic  d i s t u r b a n c e  c o m p o n e n t s  a re  g e n e r a t e d  which  
are  s t r o n g l y  a m p l i f i e d  and s a t u r a t e  d o w n s t r e a m .  M o s t  i m p o r t a n t ,  f o r  t he  u n s t e a d y  
d i s t u r b a n c e  c o m p o n e n t s  on ly  odd  m o d e s  (1, 3) . . . (1, 1S) and f o r  t he  s t e a d y  d i s -  
t u r b a n c e  c o m p o n e n t s  on ly  even m o d e s  (O, 2 ) . . .  (0, 14) appea r .  The underlying 
m e c h a n i s m  fo r  th i s  k ind  o f  non l inea r  g e n e r a t i o n  o f  h igher  h a r m o n i c s  was  f o u n d  
to  be  c o m p l e t e l y  d i f f e r e n t  f rom the  s e c o n d a r y  i n s t a b i l i t y  m e c h a n i s m  t h a t  is 
r e s p o n s i b l e  fo r  t he  f u n d a m e n t a l  (or subha rmon ic )  b r e a k d o w n  p r o c e s s .  F r o m  the  
d i s t u r b a n c e  inpu t  m o d e  (1, 1), m o d e s  (0, 2), (0, 0), (2, 0), and  (2, 2) a re  g e n e r a -  
t e d  by  d i r e c t  n o n l i n e a r  i n t e r ac t i ons .  From these ,  m o d e  (0, 2), r e p r e s e n t i n g  a 
l o n g i t u d i n a l  vo r t ex ,  g r o w s  f a s t e s t  and  rap id ly  r eaches  a h igh  a mp l i t ude .  H ighe r  
h a r m o n i c s  a re  t hen  g e n e r a t e d  by d i r ec t  non l inea r  i n t e r a c t i o n s  b e t w e e n  the  m o d e s  
(1, 1) and  (0, 2) a n d / o r  r e s u l t i n g  h ighe r  modes .  More  de t a i l s  can be  f o u n d  in [6]. 

10-1 

U '  

10-2 

i 0 - 3  

10-~ 

lO -S  

a) 10-I 

, iO -~  

V . "  / / i i ' : )  7._ ":," ~o-~ 
I , "  / I ! L  ,`/ - " "  I / , I / / / : /  _-iS ":'" 
I , ,  ,I :,'/,'1i i _  ":" '  ~°- '  

z ,, ," / i , - ' :  

I 2 3 q 5 6 7 8 
x 

b )  j ~  

/ / / 

, "  / "  ~ _ _ _  u.0.0 

, _ _  _ _  _ / , " / / ' :  - . _  
! ~ , /  /" i ,..I . . . .  up., 

Y , /  / / , ' ) ~  ..... "?,,o 
, , -:-- °o.,,°°" 
1 2 3 q 5 6 7 8 

× 

Fig. 2: A m p l i f i c a t i o n  curves  fo r  the  m a x i m u m  o f  the  u ' - d i s t u r b a n c e  
a) u n s t e a d y  c o m p o n e n t s  U'l.k (k--I-IS); b) s t e a d y  c o m p o n e n t s  U'O,k (k=O-14) 
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I t  is t h e r e f o r e  n o t  su rp r i s i ng  t h a t  the  s t r u c t u r e s  a s s o c i a t e d  w i th  t he  n o n -  
l inear  d i s t u r b a n c e  d e v e l o p m e n t  are  a l so  d i f f e r e n t  f r o m  the  l a m b d a - s h a p e d  v o r -  
t i ces  o b s e r v e d  a t  the  f u n d a m e n t a l  (or  subharmonic )  b r e a k d o w n  p r o c e s s .  Such 
s t r u c t u r e s  may be  v i sua l i zed  by i s o - s u r f a c e s  o f  t he  vo r t i c i t y  c o m p o n e n t s  t0x 
and Oz t h a t  can be c a l c u l a t e d  f r o m  the  ve loc i ty  c o m p o n e n t s  u, v, and  w. 

In Figs.  3 and 4 i s o - s u r f a c e s  rOxl =cons t .  and  ~0z=const. a re  p l o t t e d  in t h r e e -  
d i m e n s i o n a l  p e r s p e c t i v e  view, v i sua l iz ing  i n s t a n t a n e o u s  f l ow  s t r u c t u r e s  in a p a r t  
o f  t he  t h r e e - d i m e n s i o n a l  i n t e g r a t i o n  domain .  The s t r e a m w i s e  s e c t i o n  5.4 < x < 7.5, 
c o n s i d e r e d  here ,  covers  a b o u t  3 wave l e n g t h s  Xx o f  t he  f u n d a m e n t a l  3-D d i s t u r b -  
ance m o d e  (1, 1), whi le  the  z - d i r e c t i o n  covers  one wave l e n g t h  Xz. The i s o - s u r -  
faces  c o n s i s t  o f  i s o - c o n t o u r s  I~xl =cons t . ,  and  mz : c o n s t . ,  r e spec t ive ly ,  c a l c u l a t e d  
a t  success ive  d o w n s t r e a m  x p o s i t i o n s  and p l o t t e d  in p e r s p e c t i v e  r e p r e s e n t a t i o n .  

y 

z 

x ... 

z S.~ ' 

Fig. 3: Pe r spec t ive  view of  i n s t a n t a n e o u s  l ong i t ud ina l  vo r t i ca l  s t r u c t u r e s .  
V i sua l i za t ion  by i s o - s u r f a c e s  I~0xl =1. t i p p e r  l e f t  f igure:  view f r o m  u p s t r e a m .  

z 

x 

Z 6,S 

kz/2S. 4 

Fig. 4: Pe r spec t ive  view o f  i n s t a n t a n e o u s  h i g h - s h e a r  l ayers .  V i sua l i za t ion  by 
i s o - s u r f a c e s  ~0z=30. U p p e r  l e f t  f igure:  view f r o m  u p s t r e a m .  
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The iso-surfaces I~xl--const. in Fig. 3 visualize vortical s t ructures  oriented in 
streamwise direction. There are no indications for lambda-shaped vortices. In the 
contrary, the vortical s tructures are closely spaced in streamwise direction, with 
one lying on top of  the preceeding, and splitting into two tips while evolving 
downstream. The iso-surfaces ~z=const.  in Fig. 4 enclose the regions of  high 
shear, and it is obvious that  two high-shear layers per wave length )~z in the 
z-direction appear, organized in the streamwise direction in a staggered pattern. 

In Fig. S, the flow structures are visualized by numerically generated time- 
lines as they would be generated experimentally by a horizontal (hydrogen 
bubble) wire placed at x=5, y=O.O125 (critical layer). For the fundamental break- 
down, numerically generated time-lines develop into lambda-vortex s tructures  
(see E10]). In Fig. 5, however, the structures show a "honeycomb"-like pattern, 
that  is quite different f rom the patterns of  aligned or  staggered lambda vortices. 

-~i/2 

-~,1 SO 5S  60  6.5 X 7.0 

Fig. 5: "Honeycomb"-like pattern of  flow structures visualized by time-lines. 
a) perspective view; b) view from above. 

The results  demonstrate  that  realistic numerical simulations of  compres-  
sible transition phenomena based on the spatial model are already feasible with 
the current generation of  supercomputers.  Extreme care has to be placed on the 
validation of  the numerical method. Once Validated, such simulations allow for 
the exploration of  physical phenomena that  are not previously known from 
experiments, and enable considerable insight into the relevant physical mecha- 
nisms. In addition to experiments and theory, numerical simulations have become 
a powerful tool  in transition research and, therefore, will play an increasingly 
important role in the future, in particular for high-speed flows. 
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The Institute for Applied Mathematics ~ Scientific Computing 
Indiana University, Bloomington, IN 47405 

and 
Laboratoire d ' analys e numdrique d ' Orsay 

Universit6 Paris-Sud, 91405 Orsay, France 

i. INTRODUCTION 

In this paper ,  we present new progress made in the development of the Nonlinear 
Galerkin method  : i ts  extension to nonhomogenous flows, nmnely to the channel flow 
problem. It is well known tha t  the number  of degrees of freedom of a turbulent  flow 
increases as a power of the Reynolds number.  But,  based on a spectra l  decomposit ion,  
we observed tha t  most of the wavelengths ( the small wavelengths) carry  only a small  par t  
of the to ta l  energy. Hence, we have developped news algori thms which take into account 
the effect of these small eddies in a simplified way. In fact, the  Nonlinear G alerkin method  
is a dynamical  adapta t ive  scheme combining space and t ime discretization.  

2. THE NONLINEAR GALERKIN METHOD APPLIED TO THE CHANNEL FLOW PROBLEM 

We define, in space dimension 2, a channel (0,L) x (-1, +1). In this  channel,  we 
consider a flow which is driven by a constant  pressure gradient  and  governed by the 
incompressible Navier-Stokes equations : 

(1) 
0 U  . . _ +  ---+ 
---~---uAu + ~  x ' - ~ +  V p =  0 

div(- ) = o 

where " J  = V x ~ is the vorticity, ~ = --U-*('~, t) is the velocity vector and p = p ( 7 ,  t) 
is the  pressure term. 
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For the boundary  conditions, we assume that  ~ is periodic in the xa-direction (i.e. 
-ff~(-~" + L.ex, t) = "-~(%-~, t)) and tha t  -5* satisfies Dirichlet conditions in the x2-direction 
(i.e. "-U'*(e2, t) = 0). Moreover, we require for p the following condition : 

p ( L . ~ , t )  = p(O,t) + K,  I¢ > 0 given 

Using Poisson's equation, we can express p as a function of "~ and then rewrite (1) 
in the form : 

0 ~  
(2) 0---t- - u A - ~  + B ( ~ ,  -4*) = 0 

__4 ---4 
where B ( - ¢ , - ¢ )  = ~ × ~ + VP(  ~ )- 

It is appropriate ,  due to the boundary conditions, to expand -U ~ in a Fourier series in 
the xl-direct ion and in a Cehbyshev polynomial series in the x2-direction : 

(3) - ¢ ( - ~ , t ) =  ~ ]  ~(k ,e)e ik~ 'Tdx2)  
kEZ,tEN 

where Tt(x2) is the Chebyshev polynomial of order ~. 

For fixed N = (n=~, n=2) , the classical pseudo-spectral method consists in finding an 
approxamatxon u g  of "~ : 

2 n~2 

(4) ~-~N('~,t) = E E Cz(k'g)eik*~Tt(x2) 
k = l - -  - ~  t=0  

that  satisfies the following equation : 

d ~  
- -  - -  PNBN(UN,  UN) 0 (5) dt uA~--~N + - ~  ~ = 

and the boundary  conditions. Here, BN corresponds to a pseudo-spectral  approximat ion 
of B. To solve (5), we use an algorithm proposed by Kim, Moin and Moser (1<387). 

The  Nonlinear Galerkin method proceeds as follows. For a given integer ni < n=~, we 
define a decomposit ion of u-'~N, in the xx-direction, into small and large eddies by : 

(6) ~ ~ + 
- - - - -  Ynl Zni 

where : 

(7) 

nx2 

/ Y,,~i. x , ) = k=a-'~2" t=0 

k=l--~-~= k=-~ t=o 
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Hence, Yni represents the large eddies and --+ zn~ represents small eddies of the flow. At 

this point, we introduce two projectors P,,, and Qn, defined by ~ = ---* P.,uN and ~ = 
--.+ 

y ~ a n d  Q n i i t N .  Applying these projectors to (5), we obtain a coupled system for ---+ z,, i-'-* 

{ dyn---~ --~ ~ ~ ~ ~ 
(s) --EE - , '~v,,, + P.,DN(V,,, ,  V.,)  + P,,, BN(V,,,, ~. , )  = 0 

dz.---~ ~ '--~ - ~  B --~ YE~, - u A z . ,  + Q, , ,BN(y , , , ,y . , , )  + Q~,, N(Y,,,, n,) = 0 

where ])N(¢, '/J) =- BN(¢,  ¢ ) +  BN(~b, ¢) + BN(¢ ,  ~b). 

As it was shown in the periodic case (Foias, Manley and Temam (1987,88)), ~ (resp. 

tO Yn l  dt 1" Znl  ~ is small compared (resp. Hence, may be computed less frequently 
in time : we neglect its evolution during a computed number of iterations. Due to 

intermettency phenomena, even if ~ (resp. d___~. ~ is small, it may  have strong bursts Zn" dt J 
and become non negligible during a short transient period (see Figure 1). Hence, the 
cut-off value nl can not be fixed uniformly in time. So, we have developped a multilevel 
adaptative procedure that  we describe in the next section. 

3.  IMPLEMENTATION OF TIIE METIIOD 

We introduce several intermediate levels of discretization ni smaller than nz~ : 
n l  < . . . . . .  < n i  < n i + l  < . . . . .  ~ nx~  

where the ni 's  are appropriate for the Fast Fourier Transforms. 

We consider two real constants 01 and 02 with 02 > 01 and define two levels namin 
and nl . . . .  as follows : 

(9) ~ < 01 (resp. 02) for each ni > nXm~.= (resp. nlmln) 
Ym IL 2 

Assuming that  ~NN is known at time t,,, we compute these levels according to the 
procedure (9). According to some criterias, we define a characteristic time Tcy~le. Now 
from t ,  to t ,  -I- Tcyd¢, the cut-off value nl varies in time as follows : 

ni decreases from nlmax tO n l r n i n  , grows up from 

nl,,{n to n lm , ,  and so on, until tn + T~ycz~ is reached. 

Hence, ni describes a succession of classical V-cycles. For a given time tm between t,~ 
and tn + Toyota, we assume that the corresponding level is ni. Then, the integration of 
the system (8) is as follows : 

the -'-* ynl equation is integrated by the classical method 

while ~ is f rozen:  z~,(tm) = z~,( t , , -1)  
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When t~ + Tcycz~ is reached, we perform several time steps on the freest grid (level), 
i.e. we integrate the full system (8). Then, we start again a new cycle as we did at time 
t = t , .  Figure 2 shows the vm'iation in time of n l , , i ~  a n d  nlrnax.  

4. NUMERICAL RESULTS 

In this section, we first describe numerical results obtained with the Nonlinear Galerkin 
methods on this problem. Figure 3 shows the evolution of the L 2 norm of the errors made 
by computation of an exact solution. Computations are performed with the classical and 
the Nonlinear Galerkin methods : the curves are essentially the same. In this case, the 
viscosity u is equal to 1.0 and the time step is At  = 10 -a.  The numerical scheme is 
globally of order 2 in time. On such computation, we can easily control the accuracy of 
both methods and test each code. Figure 4 shows the CPU time used by each program 
: a gain of approximately 25% is obtained with the nonlinear Galerkin method. 

Figure 5 and 6 show the contours of the vorticity respectively at time t = 0 and t = 10. 
In this case, the solution is not known a priori. The viscosity u is equal to 5.0 × 10 -4 
and the time step is At = 10 -3. The length of the channel is 27r and K = ~. The total 
number of modes required is N = (128 × 160). 

CONCLUDING REMARKS 

In this paper, we have described numerical tests performed with the Nonlinear Galerkin 
method on the 2D chalmel flow problem (a nonhomogeneous flow with nonperiodic 
boundary conditions). These results show that the Nonlinear Galerkin method is well 
adapted to this problem. As for the periodic case, significant gain in computed time is 
obtained and the solutions obtained by the two methods are of the same order. Devel- 
oppements and more physical results on this problem will be reported elsewhere. 
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I n t r o d u c t i o n  

The most part of phenomena taking place in the unsteady and 

t r a n s i t i o n a l  f l u i d  f l ows  a round  f i n i t e  b o d i e s  i s  

c h a r a c t e r i s e d  by t h e  e x i s t a n c e  o f  t he  l a r g e  s c a l e  o r g a n i z e d  

s t r u c t u r e s  in them ( l amina r  and t u r b u l e n t  boundary  l a y e r s ,  

f r e e  s h e a r  l a y e r s ,  n e a r  wake,  J e t s ,  e t c . ) .  S u p p o s i n g  t h a t  

t he  dynamics  o f  such  s t r u c t u r e s  i s  d e s c r i b e d  by hydrodynamic  

e q u a t i o n s  w i t h o u t  any t u r b u l e n c e  models  i t  i s  p o s s i b l e  t o  

u s e  N a v i e r - S t o k e s  e q u a t i o n s  f o r  the  d e s c r i p t i o n  o f  i t ' s  

b e h a v i o u r  in  t h e  bounda ry  l a y e r  and in t he  nea r  wake f o r  

u n s t e a d y  and t r a n s i t i o n a l  f low r e g i m e s  a round  f i n i t e  body 

u s i n g  s p e c i a l  t r a n f o r m a t i o n  o f  c o o r d i n a t e s .  To do t h i s  i t  i s  

n e c e s s a r y  t o  c o n s t u c t  n u m e r i c a l  method which  p o s s e s s e s  by 

some s p e c i a l  p r o p e r t i e s .  The f i n i t e  d i f f e r e n c e  scheme o f  

method must be s e c o n d  o r d e r  o f  a c c u r a c y  in s p a c e  v a r i a b l e s ,  

t o  p o s s e s s  by minimal scheme v i s c o u s i t y ,  t o  be w o r k a b l e  in 

wide  r ange  o f  R e y n o l d s  numbers and t o  be mono ton ic .  

Numerical method and flnite-dlfference scheme 

One o f  t he  v e r s i o n  o f  t h e  S p l l t t i n E  on p h y s i c a l  f a c t o r s  

Method for Incompressible Fluid (SMIF) [I], which has been 
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g e n e r a l i z e d  now f o r  t h r e e - d i m e n s i o n a l  p r o b l e m s  [ 2 ] ,  n o n -  

homogeneous  f l u i d s  [3] and  f l o w s  w i t h  a f r e e  s u r f a c e  [4] i s  

u s e d  h e r e  f o r  t h e  c o n s i d e r e d  p r o b l e m .  

For the adequate numerical modelling of hydrodynamic flows 

with large gradients of parameters it Is necessary to 

c o n s t r u c t  f i n i t e - d i f f e r e n c e  scheme w i t h  h i g h - o r d e r  o f  

a p p r o x i m a t i o n  w h i c h  h a s  a min ima l  scheme v i s c o s i t y  and  i s  

m o n o t o n i c  and  s t a b l e  o v e r  a wide  r a n g e  o f  R e y n o l d s  number s .  

The c o n s t r u c t i o n  o f  an  inhomogeneous  ( h y b r i d )  f i n i t e -  

d i f f e r e n c e  scheme ,  w h i c h  s a t i s f i e s  t h e  r e q u i r e m e n t s  p o i n t e d  

a b o v e ,  w i l l  now be c o n s i d e r e d  by t a k i n g  t h e  l i n e a r  model 

e q u a t i o n  

~t + afx= o, a = oonst 

as  an  e x a m p l e .  

L e t  u s  i n t r o d u c e  a f i n i t e - d i f f e r e n c e  

F~. (I) 
~n+ 1_ n 

1 f i  f i + l / 2 -  f l - l / 2  
+ ~/ = 0 

h 

(1) 

a p p r o x i m a t i o n  o f  

(2) 

and i n v e r s t i g a t e  t h e  c l a s s  o f  d i f f e r e n c e  schemes  w h i c h  c a n  

be w r i t t e n  i n  t h e  f rom o f  a two p a r a m e t e r  f a m i l y  in  t h e  

f o l l o w i n g  manne r :  

I~ l n + ( 1 . - a - ~ )  n I n i~ a'~o 
i-I fi + ~ i+l" 

f i + l / 2  = (3 )  
fi+2 + ( l - a - ~  f~+l  + ~ ~ "  i r  a<O 

I t  I s  known [5] t h a t  i t  i s  i m p o s s i b l e  t o  c o n s t r u c t  a 

homogeneous  m o n o t o n i c  d i f f e r e n c e  scheme o f  h i g h e r  t h a n  t h e  

f i r s t  o r d e r  o f  a p p r o x i m a t i o n  f o r  E q . ( 1 ) .  A m o n o t o n i c  scheme 

o f  h i g h e r  o r d e r  c a n  t h e r e f o r e  o n l y  be c o n s t r u c t e d  e i t h e r  on 

t h e  b a s i s  o f  s e c o n d - o r d e r  homogeneous  schemes  u s i n g  

s m o o t h i n g  o p e r a t o r s ,  o r  on t h e b a s i s  o f  h y b r i d  schemes  u s i n g  

d i f f e r e n t  c r i t e r i a  i n v o l v i n g  s w i t c h i n g  o v e r  f rom one scheme 

t o  a n o t h e r  ( d e p e n d i n g  on t h e  n a t u r e  o f  t h e  s o l u t i o n )  [ 6 ] ,  

p o s s i b l y  w i t h  t h e  u s e  o f  s m o o t h i n g  [ 7 ] .  

Here  we c o n s i d e r  a h y b r i d  f i n i t e  d i f f e r e n c e  scheme w h i c h  i s  

b a s e d  on t h e  c o m b i n a t i o n  o f  m o d i f i e d  upwind  scheme (MILS) and  

m o d i f i e d  c e n t r a l  d i f f e r e n c e  scheme (MCDS). 

F o r  t h e  MUS (8--0) t h e  r e q u i r e m e n t  o f  t h e  min ima l  scheme 
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v i s c o s i t y  i m p o s e s  t h e  f o l l o w i n g  c o n d i t i o n :  a = - 0 . 5 ( 1  - C ) ,  

w h e r e  C o u r a n t  number  C = %-l a I l b .  

F o r  t h e  MCDS (a--O) t h e  same r e q u i r e m e n t  g i v e s :  ~ = 0 . 5 ( 1 - C ) .  

B o t h  o f  them a r e  o f  t h e  s e c o n d  o r d e r  o f  a c c u r a c y  and  h a v e  

z e r o  scheme v i s c o s i t y .  B o t h  o f  them a r e  m o n o t o n i c  when 

i - 1  " 

w h e r e  ~(C)<_C~-g(C)  a n d  C.(C)=(1-c) / r2(2-C) ] ,  ~(C)=2(1+C)/C. 
The r e s u l t i n g  s w i t c h  c o n d i t i o n  may be  w r i t t e n  a s  f o l l o w s :  

-~O, then MUS, 
• (5) i t  (a-,/ '  x ,/'xx ) l + l / 2  [ < 0 ,  then MCDS. 

In the test case of Eq.(1) with the initial data f(O,x)=1, 

if x~O, I(O,x)--O, if z>O and a=l, h=0.2, C=0.5, the 

f u n c t i o n  I ~ .  o b t a i n e d  u s i n g  scheme o f  t h e  f i r s t  o r d e r  
o f  a c c u r a c y  [5]  ( c u r v e  1 ) ,  o f  t h e  s e c o n d  o r d e r  o f  a c c u r a c y  

[8]  ( c u r v e  2 ) ,  o f  t h e  t h i r d  o r d e r  o f  a c c u r a c y  [9]  ( c u r v e  3 )  

and  u s i n g  c o n s i d e d  h e r e  scheme ( c u r v e  4)  i s  shown in  F i g . i  

f o r  t=15  ( n = 1 5 0 ) .  

(4) 

The same approach is used for the approximation of the 

convective terms in the equations of motion for 2-/) and 9-D 

problems with the central difference for the viscous terms. 

and may be used for the convective terms in the temperature. 

energy or density transfer equations b o t h  for the 

compressible and for the incompressible fluid flows. 

Some numerical results 

At Reynolds numbers lO<Re<40 steady symmetrical separated 

flows around circular cyllnder is stable. At least two 

regimes exist at Re>40 - unstable symmetrical and stable 

periodic. The periodic flow which is realized at given fixed 

Reynolds number doesn't depend on the way of its receiving 

(Influx-outflux of the different intensity, rotation, etc.). 

The d e p e n d e n c e  on t i m e  o f  t h e  t o t a l  l i f t  c o e f f i c i e n t  Cy i s  
shown in  F i g . 2  f o r  Re=55,  100 and  225 .  
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At Re=lO0 only the alternative separation from both sides of 

the cylinder exists. At moderate Reynolds numbers 

(200<Re<500) the unsteady flow is essentially complicated by 

the existence of the secondary effects: the instability in 

separated shear layers during some part of the period, the 

secondary vortexes on the rear part of cylinder surface, the 

secondary vortexes near reattachment point. 

Our c a l c u l a t i o n s ,  which  a r e  b a s e d  on the  a d e q u a t e  

r e p r o d u c t i o n  o f  l a r g e  s c a l e  v o r t e x  s t r u c t u r e s  a r i s i n g  

in the  u n s t e a d y  s e p a r a t e d  f l ows  a round  f i n i t e  body 

(boundary  l a y e r ,  f r e e - s h e a r  l a y e r ,  n e a r  wake e t c . ) a l l o w  to  

s i m u l a t e  t r a n s i t i o n a l  f l u i d  f l ows  a l s o .  The compar i son  o f  

numer i ca l  r e s u l t s  ( t i m e - a v e r a g e  s u r f a c e  p r e s s u r e  
d i s t r i b u t i o n )  w i t h  t h e  e x p e r i m e n t a l  d a t a  [10] f o r  Re=4.10 s 

shown in F i g . S ,  where a l s o  shown e x p e r i m e n t a l  d a t a  [11] f o r  
l aminar  f l ows  (Pe=lO 5) and e x p e r i m e n t a l  d a t a  [12] f o r  
t u r b u l e n t  f low ( R e = 8 . 6 - 1 0 e ) .  

The c r i s i s  o f  t o t a l  d r a g  c o e f f i c i e n t  and s h a r p  r i s e  o f  t he  

S t r o u h a l  number t a k e  p l a c e  and a r e  s i m u l a t e d  n u m e r i c a l l y  

( w i t h o u t  any t u r b u l e n c e  mode l s )  f o r  t he  c r i t i c a l  R e y n o l d s  
numbers (Re. ~ 4 - 1 0 5 ) ,  what i s  in a good agreement  w i t h  an 

e x p e r i m e n t a l  d a t a  [ i S ] .  
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Introduction 
How disturbances are ingested into a boundary layer, evolve, and lead to transi- 

tion is of practical engineering importance. To compute this disturbance evolution, 
direct numerical simulations (DNS) using the full Navier-Stokes equations is the rele- 
vant solution procedure; yet, the computational demands for solving this mathemat- 
ical system are beyond current capabilities for practical engineering design processes. 
However, in a research environment, solutions to the full system can be used both to 
study physical mechanisms associated with problems of interest and to test theories 
which involve simplifying approximations to the full equations. Here, results from 
the direct numerical simulations of the Navier-Stokes equations in the spatial frame- 
work are used to validate the parabolic stability equations (PSE) theory developed 
by Herbert (1991) and Bertolotti (1991). 

For this study, disturbances are ingested into the boundary layer by assuming 
that linear stability theory can adequately represent the initial disturbance profile. 
Then amplitudes are somewhat arbitrarily imposed on the profiles. In this manner, 
both theory and computation can employ the same initial disturbances. First, a single 
2-D disturbance is forced, and theoretical results are compared with the computations 
for the flat plate boundary-layer problem. A pair of oblique WaVeS is, then, forced 
and similar comparisons are made. 

Numerical Methods 
The incompressible, unsteady Navier-Stokes equations are solved in disturbance 

form. Namely, the instantaneous velocities and pressure are decomposed into ba- 
sic components and disturbance components. The basic component is described by 
the Blasius similarity profile and the disturbance component is obtained by computa- 
tion. The governing equations are nondimensionalized with respect to the free-stream 
velocity, Uoo, the kinematic viscosity, u, and some length scale at the inflow (say, dis- 
placement thickness, 5~). A Reynolds number can then be defined Ro = UooS~/v. 
The governing equations are subject to homogeneous Dirichlet boundary conditions 
at the wall and in the far field. At the inflow a disturbance is forced, and at the 
outflow the buffer-domain technique, introduced by Streett and Macaraeg (1989), is 
used. 

The spatial DNS method is novel in that it obtains high-accuracy gains through 
using a combination of spectral and high-order compact difference methods. The 
spatial discretization entails: 4th-order finite differences for the implicit pressure 
equation and 4th- or 6th-order compact differences for the explicit momentum equa- 
tions in the streamwise (x) direction; spectral-collocation methods in the wall-normal 
(y) direction; and full Fourier or Fourier cosine/sine series in the spanwise (z) direc- 
tion. For time-marching, a time-splitting procedure is used. In the first step of the 
time-splitting procedure, the pressure is neglected from the momentum equations 
and intermediate velocities are obtained. The pressure field is next obtained by solv- 
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ing Helmholtz equations. Then, the full time-step velocites are computed with the 
updated pressure field. 

To obtain the pressure field, solutions of 2-D Poisson equations and 3-D 
Helmholtz equations for each time-step are required, where the pressure is deter- 
mined in Fourier coefficient space. In order to solve the equations efficiently, a fast 
elliptic solver is required. For this purpose, the tensor-product, or eigenvector de- 
composition approach is employed. Danabasoglu, Biringen, and Streett (1990) used 
the eigenvector decomposition method on a non-staggered grid for the 2-D channel 
problem. Joslin, Streett, and Chang (1992) extended the approach for the boundary- 
layer problem. Using the influence matrix method, solutions may be obtained for all 
Fourier coefficients on a non-staggered grid, or the influence-matrix approach may 
be used on the 2-D eoefflcient component, and a direct solver can be used on the 
3-D components on a staggered grid. Both approaches have been implemented and 
tested. 

For the time-splitting procedure, implicit Crank-Nicolson differencing is used for 
normal diffusion terms and an explicit 3-stage Runge-Kutta (RK) method, introduced 
by Williamson (1980), is used for all remaining terms. This time-splitting procedure 
consists of three intermediate RK stages, each stage of the following form: 

u* Urn 
-- C ~ H m ( u )  + vz D2(u* + u  m) (1) 

h'~ Ro - 

where 

1 V v2 m+l = (2) 

U m + l  - -  U* 
- -  h~ n - - - V ( I  ~m't-1 ( 3 )  

H m ( u )  = L(u_) m + C~nHm- l (u ) ,  

= (u_. + v )u  + l v L u  
- -  R o  - -  

Here, u_* are disturbance velocities at the intermediate RK stages, u m are velocities 
at previous RK stages (m = 1, 2 or 3), V2z = 02/Ox 2 + 02/Oz 2, h~  is the time-step 
size, C TM 1,2,3 are constants given by Williamson (1980), D 2 is the derivative matrix, 
and • is a pressure-like quantity. Equation (2) is subject to homogeneous Neumann 
boundary conditions only, so the slip-velocity corrections described by Streett and 
Hussaini (1986) are used to maintain continuity. The above system (1-3) is solved 
three times corresponding to the three stages of the Runge-Kutta method. The result 
after the third stage is the full time-step velocity field. 

Results 
For the present paper, PSE theory results are compared with the spatial DNS 

results for 2-D Tollmien-Schlichting (TS) wave propagation and oblique-wave break- 
down. The PSE results are obtained using the compressible code of Chang, et al. 
(1991) in the incompressible limit, M~ ~_ 0. 

2D T-S Wave Propagation. A 2-D Tollmien-Schlichting disturbance with amplitude 
A ° = 0.25% is introduced into the boundary layer by a forcing at the computa- 
tional inflow. Calculations are made with an inflow Reynolds number Ro = 688.315 
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and frequency F = 86. The spatial DNS computations are performed on a grid of 
2041 uniformly spaced streamwise nodes and 81 wall-normal collocation points. The 
outflow boundary is located 4426* from the inflow boundary, and the far-field, or 
free-stream, boundary is located 756* from the wall. For the time-marching scheme, 
the disturbance period is divided into 320 time steps. 

In figure 1, maximum streamwise amplitudes for the mean-flow distortion (Uo), 
fundamental wave (Ul), and first harmonic (u2) with downstream distance from DNS 
are compared with the PSE results. Both the fundamental and first harmonic are 
in good quantitative agreement throughout the linear and weakly nonlinear regions, 
while some discrepancy occurs with the mean-flow distortion quantity in the nonlinear 
region where saturation is approached. Further, disturbance profiles at a streamwise 
location of R = 1519 are compared. The TS component and harmonics are in good 
quantitative agreement even in regions of high gradients. A small discrepancy in the 
results is revealed in the mean-flow distortion quantity, as drawn out in the wall- 
normal component (vo) shown in figure 2. This discrepancy is probably due to the 
homogenous Neumann boundary conditions imposed in the far-field normal compo- 
nent of the mean-flow distortion equation for PSE theory. This leads to a nonzero 
normal mean-flow component in the far-field. The DNS approach enforced homoge- 
neous Dirichlet far-field conditions resulting in exponentially decaying disturbances. 
Also shown in figure 2 is good quantitative agreement for the fundamental wave (v 1) 
amplitude and profile as predicted by PSE theory and compared to the DNS results. 

Oblique-Wave Breakdown. Due to its non-linear nature, no adequate formal theory is 
available to explain the breakdown process; however, similar mechanisms have been 
studied by Hall and Smith (1991) using asymptotic methods in the large Reynolds 
number limit. To quantify the mechanisms of interest in the finite Reynolds number 
range, one must presently resort to methods such as DNS, or possibly PSE theory, to 
study the wave interactions. This alternative route to, or mechanism of, transition 
was previously studied by Schmid and Henningson (1992), Chang and Malik (1992), 
and Joslin, Chang, and Streett (1992). 

Here, an oblique-wave pair is forced at the inflow with amplitudes A ° = 1.0%. 
The inflow Reynolds number is Ro = 900, the frequency is w = 0.0774, and the 
spanwise wavenumbers are /~ = +0.2. Computations are performed on a grid of 
901 uniformly spaced streamwise nodes, 61 wall-normal collocation points, and 10 
symmetric-spanwise nodes. In the streamwise direction, the outflow boundary is 
located 4656* from the inflow boundary; the far-field, or free-stream, boundary is lo- 
cated 756* from the wall; and the spanwise-symmetric boundaries are one-half span- 
wise wavelength, Az/2 = 7r//~, apart. For the time-marching scheme, the disturbance 
period is again divided into 320 time steps. 

The computed primary disturbance (1,1), mean-flow distortion (0,0), and the 
dominant higher-order mode, which is the vortex mode (0,2), are shown with 
downstream growth in figure 3. The self-interaction of the waves feeds energy 
into the vortex mode and mean-flow distortion. The interaction of the wave 
pair with the vortex leads to a rapid cascade of energy to other low-wavenumber 
modes which have growth-rate characteristics similar to the vortex mode. The 
vortex and other harmonics (not shown) rapidly overtake the introduced waves 
(1,1) and breakdown occurs. This is made apparent by a rise in the skin- 
friction (c/) curve, as shown in figure 4. Although both the DNS and PSE 
results near the end of the domain are inadequately grid-resolved, both indi- 
cate a similar skin-friction curve rise. In addition, a comparison of the distur- 
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bance profiles shows similar good agreement between the PSE and DNS results. 
Conclusions 

In the present paper, a spatial direct numerical simulation approach has been used 
to test the validity of parabolized stability equations theory in computing two- and 
three-dimensionM boundary-layer instability mechanisms. 

PSE theory has accurately predicted the disturbance development for 2-D wave 
propagation through saturation. Also, it was shown that oblique-wave pairs self- 
interact to excite a dominant streamwise vortex structure that can lead to break- 
down. The PSE results are in good agreement with the full computations up 
to the skin-friction rise. A difference in the far-field boundary condition treat- 
ment between the DNS and PSE methods was identified as likely the reason 
for differing mean-flow distortion quantities. How this difference in the mean- 
flow distortion affects the global prediction capability of PSE theory is yet un- 
known. In this paper, it has been shown, that for the present flat plate prob- 
lem, PSE theory results quantitatively agree with the spatial DNS results; how- 
ever, expanding the range of problems beyond that for which PSE theory has been 
tested must be made with caution due to the assumptions underlying the theory. 
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Introduct ion  

For the development of a new piston-engine a specific power should be obtained with a 
high efficiency and a minimum of pollution. This requires a deep insight into the combustion 
and flow processes. 

Since the reaction processes are essentially influenced by flow parameters, a numerical 
calculation of combustion is only possible, if the vortical and turbulent structures of the flow 
at the end of the compression stroke are known. This requires an exact prediction of the flow. 
To attain a reliable solution the numerical results should be compared with cycle-resolved 
experimental measurements of an engine-model. Recent cycle-resolved experimental data of 
the flow inside the cylinder of a rectangular piston-engine model using the Mach-Zehnder 
interferometry show large vortical structures dominating the flow during the intake and 
the beginning of the compression stroke. Before reaching the top-center (TC) the vortical 
structures decay into turbulence [1], [2]. 

Phys ica l  Pr ob lem 

The turbulence introduced during the intake stroke with the incoming jet is damped out 
at the beginning of the compression stroke. Near the TC the three-dimensional perturbati- 
ons reach a sufficient level to generate smaller vortical structures leading to a complex flow 
field with turbulent phenomena. The numerical simulation of the flow requires the resolu- 
tion of the smallest length-scale, i.e. the Kolmogorov-length Ik. Henshaw et al. [3] found 
an estimation of the length-scale for incompressible flows $min ~ ( u / I D ~ ) ½  < lk. The 
quantity IDu~oo means the maximum instantaneous velocity gradient in space and time. In 
the case of the piston-engine model the resolution of this length requires 10 TM grid points, 
whereas only 5 • 105 grid points are realized. Due to the relatively coarse grid, preventing 
the generation of a realistic energy cascade to the smallest length-scales, the flow cannot 
become fully turbulent. There is a cut-off inside the initial-range changing the behaviour of 
the numerical solution compared with a physically real flow field. 
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Figure 1: Comparison of the density contours inside a rectangular piston-engine model 
during compression stroke at 270°CA, 330°CA and 360°CA (from left) (above: integrated 
values of a three-dimensional simulation, below: Mach-Zehnder interferometry) 

M e t h o d  of  Analys i s  

To evaluate the numerical solution, experiments are performed for the in-cylinder flow of 
an engine model with a rectangular piston, which is used for flow visualization experiments 
at the AIA. The Mach-Zehnder interferometry requires a plane flow to obtain density con- 
tours. Using a high-speed camera with 6000 frames/sec the cycle-resolved flow field has been 
shown by Jeschke [2]. An additional temperature  measurement at a specific point inside the 
flow permits the calculation of absolute density contours. 

For the numerical simulation the Navier-Stokes equations are integrated for three-dimen- 
sional, compressible flows to simulate the vortical structures and the transition to turbulence 
during the intake and compression stroke of a rectangular piston-engine model. An exten- 
ded, explicit Godunov-type method, second-order accurate in time and space is employed. 
Present turbulence models are not able to handle compressible influences in a piston engine 
and experimental da ta  are insufficient or not available. Therefore neither a turbulence mo- 
del nor artificial perturbations are used. For details see [5]. For this method, which is fully 
vectorized, no further artificial damping terms are necessary. 

The three-dimensional grid contains 100 × 100 x 50 cells for the case with the flat piston 
and 120 x 100 × 50 cells for the step-piston. The results of the complete flow field are shown 
by cross-sections of the density contours. For comparison with experimental da ta  the density 
values are integrated in the light-direction of the Mach-Zehnder interferometer. This leads 
to a smoothing of the contours, and some three-dimensional structures disappear. 

Resul t s  and Discuss ion  

The three-dimensional simulation agrees very well with the interferemetry data. As an 
example the integrated density contours of the compression stroke are shown in Figure 1 
with the plane piston a t 270°CA, 300° CA and 360°CA(TC) in comparison with experimental 
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Figure 2: Cross-sections of the density inside a rectangular piston-engine model for the 
compression stroke at 210°CA, 270°CA, 300°CA and 360°CA (from left) for the y-z-plane 
at  N= = 50 

density contours obtained by the Mach-Zehnder interferometry. The integration is carried 
out in the direction of the light of the interferometer. In addition to satisfying agreement 
of the vortical structures, transit ion is predicted in the same chronological order as seen in 
the experiment.  

While the main vortex structure can clearly be recognized at 270 ° CA, after the transit ion 
into a turbulent flow the influence of the numerical dissipation becomes evident. Since 
the smallest numerical length-scaie is considerably larger compared to the smallest physical 
length-scale of the energy-spectrum, the spatial fluctuations of the density contours obtained 
in the computations are less pronounced than those observed in the experiments.  

Figure 2 shows several cross-sections for the compression stroke with the view in direction 
of the piston movement providing an insight to the vortical structures. While at 210°CA 
the main vortical structure is nearly two-dimensional, with progressive compression the 
main vortex becomes three-dimensional and, finally, decays at 330 ° CA. This breakdown of 
the main vortical structure is called the transition process. First  smaller three-dimensional 
vortices can already be seen at 300°CA due to the vortex stretching. The presence of 
small numerical t runcation errors due to the discretization initiates the vortical generation 
process through vortex stretching. The small perturbations due to the errors are amplified 
by the non-linear stretching leading to three-dimensional structures with a continuous wave- 
number spectrum. The transit ion process is shown in Figure 3 for cross-sections with the 
view in light-direction. After the transition the flow becomes turbulent due to the decay of 
the vortices. At  TC a turbulent structure can be seen with a minimum vortex size of 3-8 
grid cells. Due to the numerical dissipation no smaller vortices can appear.  This leads to 
a relatively large Taylor-length of the size of several grid cells (IT = O ( A x ) ) ,  and in the 
expansion stroke all vortical structures are diminishing. 

The computed flow depends on numerical truncation errors leading to dissipation and 
dispersion of the solution and influencing the statistical turbulence da ta  of the vortical 
structures. Although initially the flow is two-dimensional, three-dimensional vortical struc- 
tures are obtained. The turbulence statistics determined are in qualitative agreement w i th  
experimental da t a  of [1]. The da ta  are averaged over 50 time-steps, i.e. 0.5 ° - 1 ° CA cor- 
responding to the periods of the LDA-measurements in [1]. During the intake stroke as 
well as the compression stroke the same turbulence intensities are found as in experiments.  
Since the coherent structures contain the major  part  of the turbulence energy, the larger 
vortical structures are investigated without modelling the flow on the subgrid level [4], [5]. 
In contrast  to the LES-model using assumptions for the subgrid-scales, which are still ra- 
rely available for compressible flow problems, the influence of the numerical dissipation and 
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Figure 3: Cross-sections of the density inside a rectangular piston-engine model for the 
compression stroke at 300°CA, 330°CA and 360°CA (from left) for the x-y-plane at N= = 25 

their behaviour concerning the numerical cut-off wave-number of the energy-spectrum is 
investigated. 

The energy-spectra of the spacial correlations across the cylinder show very steep gradients 
of k -2 to k -4 due to the numerical dissipation. In connection with the large Taylor-length 
this means a high turbulent energy dissipation, since the cut-off wave number is located 
inside the inertial range. The trend of the correlation spectra corresponds to the vortex 
sizes. Only at the expansion stroke the gradients reach a k -  ~ behaviour after the dissipation 
of all larger vortical structures. This means that fully turbulent flows always require a very 
fine resolution /kx < O(Ik). If the solution should also be free of numerical dispersion, i.e. 

3 

the phase resolution is correct, a resolution /%x < <  O(l~) is required [6]. This leads to a 
grid with 1024 cells for the examined engine-model. 

Furthermore essential influences of the inlet and wall boundary conditions and of the initial 
state of the flow are observed, see also [7]. In the literature simulations always start with 
a flow at rest. Calculating several strokes demonstrates the importance of improved initial 
conditions as well as optimal perturbations for the vortex generation. Figure 4 shows several 
intake strokes for a three-dimensional simulation with a step-piston in comparison with 
experimental data. The first intake stroke has been performed with an initially quiet flow. 
After an immediate exhaust stroke the second intake stroke has been simulated resulting 
in an improved comparison with the experimental density contours. This demonstrates the 
need of cycle-resolved experimental data as well as of a high computer capacity to simulate 
several strokes of in-cylinder flows. 

Conc lus ion  

The in-cylinder flow of an engine-model with several kinds of pistons is numerically si- 
mulated and compared with experimental density contours. The three-dimensional simula- 
tion shows an excellent agreement with the cycle-resolved experimental data. The three- 
dimensional vortical structures are initialized by numerical truncation errors at the bounda- 
ries leading to perturbations due to vortex stretching. Though there is a general influence of 
the boundary shapes, the transition process is predicted in the correct chronological order. 
Due to the high numerical dissipation with a Taylor-length in the magnitude of the grid 
cells the gradients of the correlation spectra are to steep. The inertial range appears as late 
as an equilibrium between the energy transfer of the cascade of the diminishing vortices and 
the numerical dissipation is reached. But the compression stroke is not influenced by the 
intake stroke, which can be improved by the simulation of several strokes getting optimized 
initial conditions. 
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Figure 4: Comparison of the density contours inside a rectangular piston-engine model with 
a step-piston for several intake strokes at 90°CA (left: first stroke, center: second stroke, 
right: experiment) 
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1 I n t r o d u c t i o n  

The formation and subsequent breakdown of the lee-side vortices from the leading 
edges of highly swept wings is an important aerodynamic phenomenon. They have 
been a topic of investigation since the 1950's when the research and design of delta 
wing aircraft was initiated. In recent years, with the development of high perfor- 
mance/maneuverable aircraft, there has been intense interest in this area. With the 
development of high speed supercomputers, over the last decade CFD methods have 
employed Euler and Navier-Stokes equations to predict progressively more details of 
the vortex flow behaviour. While computations based on Euler equations [1,2] show 
that the primary vortex from sharp leading edge wings is well captured, secondary 
separation is captured in computations based on laminar Navier-Stokes equations 
[3,4]. Complex vortex interaction on a cranked delta wing is also predicted closely 
[5]. 

As the Reynolds number encountered in the real flow is very high and the flow 
is dominated by a separated shear layer from the leading edge that rolls up to 
form the primary vortex, inclusion of turbulence effects by appropriate modelling 
is required for accurate prediction of the flow. Earlier studies have employed the 
Baldwin-Lomax turbulence model [6,7] and the Johnson-King turbulence model [8] 
in the study of transonic turbulent vortex flow. It is expected that due to their 
greater versatility, the two-equations model of turbulence should be applicable to 
a wider class of complex flows. In [9] a k - e model of turbulence is reported to 
give a better prediction of flow over the M-6 wing. In the present study, k - e and 
ASM turbulence models are used to compute the incompressible turbulent vortex 
flow over a delta wing. Application of these turbulence models to lee-side vortex 
flow prediction appears to be new. 

2 M e t h o d  

The Reynolds-averaged Navier-Stokes equations for steady flow are 

0 
Ox~ (pV~) = o (1) 
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o (pu~uj + ~jp - ,-~j + p~-~) = o (2) 
Oxi 

where Ui is the mean velocity, ui is the fluctuating velocity, p is the density, p is 
the pressure, rij are the viscous stresses and -puiuj  are the Reynolds stresses. The 
Reynolds stresses in (2) are calculated both by a k - e turbulence model and an 
ASM turbulence model. Transport equations for the turbulent kinetic energy, k, 

and the dissipation, e, are 

ox~ pU~k pcs(k/e)u-~ ok 

0 ( - ~ x j ) = ( e / k ) ( C d P k - C ( 2 p e )  (4) Ox~ p u ~ -  pc~(k/~)~-~ o~ 

The Reynolds stresses are obtained from the ASM approximation 

( T / k  ) ( Pk - e) -- Pij + {ij  - (2/3)eSij (5) 

{Pkk) where Pij (=- -pu-i~OUj/Oxk - pu--7-~.OUi/Oxk) and Pk (= are the produc- 
tion terms for particular Reynolds stresses and k respectively. The term Oij rep- 
resents the pressure-strain behaviour. Detailed expressions and alternative uses of 
the present formulation are provided by Armfield et al [10] and Cho ~z Fletcher 
[11]. The use of (5) implies that  (C + T~)u--T~- = (u---[~/k)(C + l))k, where C and D 
are convective and diffusive operators. In the present formulation a two-layer wall 
function is used to provide the solution and the boundary condition close to the 
solid surfaces, with the first grid point at y+ ~ 50 ,-, 100 from the surface. 

A finite volume spatial discretisation of the governing equations is used. Area 
vectors are used to provide the transformation metrics between physical space and 
computationM space [12]. The control surface values F~ are interpolated in terms 
of the cell-centered values. On a uniform physical grid the following expression is 
typicM of the interpolation for the convective part of F, 

gi~½ = F~ + ¢~_½ {0.5AF~ - ( q / 3 ) ( A F / -  AF/_~)} (6) 

where ¢i-½ is a Roe-type limiter and q allows additional control over dispersion 
behaviour. The choice ¢i_½ = 1.0 and q = 0.5 provide a third order accurate 
determination of OF/c3x on a uniform grid. The descretised equations are solved 
sequentially using a strongly implicit procedure at each iteration to obtain velocity 
components, pressure and turbulence solution. The velocity and pressure solutions 
are coupled via a SIMPLEC procedure used in conjunction with a velocity potential 
formulation. The satisfaction of the continuity equation is based on an auxiliary 
potential method where 

q~ = a~jc}, pC = _5¢/(a.)2 and pC = -/3¢ (7) 

and a,/3 and 5 are under-relaxation factors. As part of each iteration the continuity 
equation is satisfied by the solution of the following transport equation for ¢, 

Ox~ [(a*)~J '~Ox--~ ~P ~ .  = V. (pq*) -~,0~ 4 (8) 
The present algorithm is applied to study flow in a wing-body junction by Cho et 

al [131. 
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3 R e s u l t s  and D i s c u s s i o n  

Flow around the 65 ° round leading edge delta wing of the International Vortex Flow 
Experiment [2,3] is considered. The wing has a 15% taper and an aspect ratio of 
1.38. The cross-section of the wing is a symmetric modified NACA 64A005 section 
having a maximum thickness of 5% at 0.4c. A C-O mesh consisting of 96 × 24 x 24 
cells is generated using a method based on transfinite interpolation. 

Figs. 1-2 show the cross-flow velocity vectors and pressure contours of the k - e 
solution at angle of incidence of 20 ° and Reynolds number of 2.369 × 106. These 
plots and all subsequent plots are at x /c  = 0.9 plane. Flow separation and the 
formation of the lee-side vortices is seen from the cross-flow velocity vectors, and 
the characteristic low pressure in the vortex core regions is seen from the pressure 
plot. The two turbulence models produce similar mean-flow behaviour. The centre 
of the pr imary vortex is at r / =  0.724 and ( = 0.144, which compares well with the 
data  compiled by Lowson [14]. The present computations do not show secondary 
separation, which could be due to grid coarseness or, possibly the use of a wall 
function with the turbulence model. 

Figs. 3-4 show the turbulent kinetic energy, non-dimensionalised by square of 
free-stream velocity, obtained by the k - e and the ASM turbulence models. The 
maximum value of turbulence kinetic energy occurs near the minimum pressure point 
in the k - e solution. In the ASh/[ solution the maximum k occurs in the boundary 
layer at the wing surface, and a local maximum of k occurs above the wing. While 
the level of k is the same on the wing surface in the two solutions, the value of k in 
the vortex region is higher from the k - e solution. From the ASM solution the lower 
value of k and, consequently, Reynolds stresses give rise to a lower production rate. 
Figs. 5-7 show the transverse plane Reynolds stress components vv, ~--~and~--~. 
The major  contribution to the production of turbulence kinetic energy comes from 
ww. Fig. 8 shows the plot of ~--~/k. It is seen that gradients of u - ~ / k  along 
the streamline are generally small, except near the wing tip region. This implies 
that  C ( ~ / k )  is small, in general. In addition the contributions from 7)(u--7~/k) 
are also small in the region where individual Reynolds stresses are large, except in 
the vicinity of the wing tip. The ASM approximation is, therefore, generally valid. 
Further investgation of the ASM solution, particularly the lower level of k predicted 
in the vortex region, is continuing. 
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STRATEGY 
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1. INTRODUCTION 

Although major parts of transonic flow over aerofoils are practically inviscid, the 
sheared regions adjacent to the aerofoil's surface can play an important role in determining 
its aerodynamic performance due to the rapid thickening of the boundary layers induced by 
the shock. This is particularly so when the shock is sufficiently strong to provoke 
boundary-layer separation, in which case the details of the separated (post-)interaction 
region largely determine the position of the shock and materially affect the lift and drag 
coefficients. The simultaneous presence of shear, severe adverse pressure gradient and 
recirculation-related curvature close to a solid boundary lead to a complex, highly 
anisotropic turbulence structure. Extensive experience with such conditions in 
incompressible flows suggest that sophisticated modelling practices based on 
second-moment closure are often necessary for a satisfactory prediction of recirculation. 
In high-speed aerodynamics, this modelling framework is in its infancy, however, but there 
is, here too, a growing awareness of its potential. 

The computational implementation of any turbulence-transport closure can, in principle, 
be undertaken within a number of alternative solution strategies. The large majority of 
approaches solve the conservation laws within a density-velocity-based, time-marching 
framework. This route is well suited to high-speed flow, but difficulties are encountered 
at low Mach numbers when significant portions of the flow become essentially 
incompressible. For incompressible flows, in contrast, a pressure-velocity framework is the 
established route. However, the extension of this method from incompressible to transonic 
conditions, although previously undertaken, is far from established in multidimensional 
space. A consistent and general extension is clearly desirable, for it would allow a safe 
application of the method to flows at all speeds. 

This paper focuses on the formulation of a pressure-velocity scheme applicable to both 
compressible and incompressible conditions, and its perfornlance when applied, in 
conjunction with second-moment turbulence closure, to shock-induced separation. Particular 
issues highlighted are: (i) the adaptation of the incompressible algorithm to transonic 
conditions; (ii) a comparison of predictive performance of variants of the k-c model with 
a Reynolds-stress-transport closure for shock-induced separation. 
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2. COMPUTATIONAL APPROACH 

2.1 Numerical Framework 

The present solution algorithm sprang from a cell-centred non-orthogonal, fully 
collocated finite-volume method developed by the authors for incompressible 3D flow [6]. 
Attention is focused here on the route taken in adapting this procedure to transonic 
conditions. Before embarking on this topic, however, it is appropriate to summarise the 
essential elements of the incompressible methodology, which all carry over to the 
compressible environment. 
The algorithm employs a fully collocated 
storage arrangement for all transported 
properties, Fig. 1, including the 
Reynolds-stress components. Discretisation 
involves the integration of the conservation 
laws over the volume and application of 
the Gauss Divergence Theorem. Advective 
volume-face fluxes are approximated using 
either Leonard's quadratic scheme QUICK 
[1] or van Leer's MUSCL scheme [2]. 

~ i  °l 

e 

Fig. h Finite volume and variable storage 

At all speeds, mass continuity is enforced by solving a pressure-correction equation 
which, as part of the iterative sequence, steers the pressure towards a state at which all mass 
residuals in the cells are negligibly small. In conjunction with a fully collocated approach, 
this method is known to provoke chequerboard oscillations, reflecting velocity-pressure 
decoupling. To avoid this, the widely used method of Rhie and Chow [3] is used to 
interpolate for the cell-face velocities from nodal values. The interpolation can be 
demonstrated to introduces fourth-order pressure diffusion which removes the ehequerboard 
mode. Particular difficulties arise in relation to the Reynolds stresses. Their collocated 
storage results in stresses being decoupled from associated 'driving' strains. This must be 
counteracted by elaborate interpolation practices not dissimilar, in principle, to those applied 
to pressure and velocity. These practices are given in detail in ref [6]. 

The starting point of the description of the compressible variant is the 
mass-conservation equation, written below for any transformed ~,~1 domain: 

(Jp), + (pU)~ + (pV),  = 0 (1) 

where J is the Jacobian of the transformation and U,V are the contravariant velocities. 
Within a pressure-correction algorithm, momentum-flux corrections are related to pressure 
corrections via truncated (i.e. approximated) variants of the momentum equations at the 
discretised level. Hence, focusing on the eastern and northern faces of the cell in Fig. 1, 
the requisite truncated relations are: 

(pv)'. = D U ~ ( p ' e  . '  ~ o ,  - r E ,  ~,, - DV~e(p 'p  - p , ) V % ,  

( p V ) ~  = D V % ( p ~ ,  - p ~  )"Ox~ - D U % ( p ' p  - p ~  ),,,Ty~ 

(2) 

(3) 

Density and pressure perturbations may be linked via a linearised variant of the total 
enthalpy-pressure relation, 
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p, = 7P' 
( ' 7  - 1)(no - "~+"~ ~ (4) -'W'-/ 

To satisfy mass conservation within any iterative step, the contravariant face velocities must 
be corrected as follows, 

pu , pu + (pu)' pv  , pV + (pv)' (5) 

Combining equations (1)-(5) yields the pressure-correction equation, 

A,.~,;, = ~C A.,1,:,. + R.,. 
m=1~',W,N,S (6) 

where R m is the mass-residual resulting from the difference of contravariant velocities. In 
essence, the above equation is solved in conjunction with those of momentum fluxes within 
an overall iterative sequence. 

The above sequence is appropriate to subsonic flow in which the conservation equations 
are elliptic. In supersonic and transonic conditions, the hyperbolic character of the 
conservation laws must be accounted for in order to retain iterative stability and capture 
shocks. To this end, an proposal by Hafez et al [4] has been adapted. This proposal - 
applied by Hafez et al to the solution of the full potential equation - is based on the 
definition of the retarded density, ~. In one-dimensional conditions, 0 is: 

=- p - fifi~Ax (7) 

in which ~ is a 'weighting factor', to be defined later, controlling the degree of retardation. 
With relation (7), an upwind-biased gradient of the convective flux of any intensive property 

may be expressed implicitly as: 

(~_¢)~ = (u¢)x + [fi(~)fi~]~ + H O T  
(8) 

where the RHS is an expanded (i.e. explicit) form of the LHS with HOT denoting higher- 
order terms. The underlined term in equation (8) represents a dissipative mechanism 
equivalent to upwind-biasing. In the present scheme, upwind-biasing is applied to all 
convected properties. In particular, the contravariant convecting velocities multiplying flux 
variables are modified via: 

U 
pU pV 
~ V ÷  
p ~5 ' (9) 

To account for directional influences in the upwind-biasing process in two-dimensional 
conditions, the retarded density is evaluated from: 

= p - # p , A ,  = p _ p [co~( /~ ) , , , , ;Ax  + ~ i ~ ( / ~ ) p y A y ]  (10) 

with Fig. 2 giving a graphical interpretation of the above relation. The weighting factor p 
takes the form of a Mach-number-dependent monitor function which sensitises density 
retardation to the Mach number via: 
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= - 

hence ensuring that no numerical diffusion 9=~z 
is introduced for M < Mref, where Mre f is : - 

f 3  ~ 

close to 1, while ~: was varied between 1 ~ P /  
for approximately normal shocks down to 
0.6 for highly oblique shocks. A much 
more detailed account of the rationale 
behind and the implementation of density , ¢  
or pressure retardation may be found in ref ~ / "  
[6], where retardation is linked the j / p ' / k s  
characteristics of the velocity potential 

equation. Fig. 2: Schematic of density biasing 

(11) 

p r a y  

2.2 Turbulence Models 

Three turbulence models feature in comparisons to be presented below. T w o  am 
eddy-viscosity models based on the solution of equations for the turbulence energy k and 
its dissipation e. The third is the Reynolds-stress-transport closure of Gibson and Launder 
[7]. One of the k-e variants is the "standard" high-Reynolds-number model of Jones & 
Launder [8], and this operates in conjunction with log-law-based wall laws. The other is a 
low-Reynolds-number variant [6], formulated so as to conform with length-scale constraints 
implied by Wolfshtein's one-equation model [9]. 

3. APPLICATION 

In a preliminary validation stage, the present scheme was applied to inviscid transonic 
and supersonic flows [6] over bumps, the latter involving shock-shock interaction. 
Calculations were then made for a range of shock-affected boundary layers over plane 
channel bumps for which detailed LDA measurements were performed by Delery [10]. Of 
these, the most challenging is the strong-interaction case 'C' in which the turbulent 
boundary layer separates due to a strong shock at M=l.4. The grid used for high-Re model 
variants contained 110x50 nodes, while 110x80 nodes were used for the low-Re variant. 
Grid-independence tests were conducted with MUSCL and QUICK to ascertain that the 
chosen densities were adequate. 

Fig. 3 gives a general view of the predicted shock/boundary-layer interaction region. 
All models predict similar Mach-contour fields, but the second-moment closure (RSTM) 
gives rise to the strongest interaction, the most pronounced ~.-shock structure and the largest 
separation zone. Separation is reflected by a characteristic bump pressure plateau following 
the strong oblique shock, as shown in Fig. 4. Evidently, the k-e variants fail to capture 
separation properly, the role of modelling the near-wall being marginal. The RSTM, on the 
other hand, predicts a far more sensitive response to the shock, resulting in a more extensive 
recirculation zone. Clearly, however, the rate of post-shock recovery is too slow. This 
reflects a combination of three causes: first, turbulence is attenuated by the stabilising 
influence of flow curvature along the shear layer bordering the recirculation zone; second, 
the oblique shock is so strong that the very weak normal leg of the X-shock is hardly 
resolved, the consequence being an insufficient pressure recovery at x/H=3; third, the wall- 
reflection fragment of the pressure-strain term in the Reynolds-stress model has an 
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excessively attenuating influence on the wall-normal turbulence intensity and hence on the 
shear stress. This latter weakness has been observed in other flows. More generally, the 
excessive sensitivity predicted by variants of second-moment closure related to that of 
Gibson & Launder has been observed, albeit to a lesser extent, in other studies based on 
entirely different numerical strategies (e.g. Dimitriadis and Leschziner [11]). 
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I. I N T R O D U C T I O N  

There has been an increasing desire to predict the turbulent flow behavior over 
complicated aerodynamic geometries in high-speed flows due to the recent interna- 
tional interest in developing vehicles that fly at supersonic/hypersonic speeds. Unfor- 
tunately, the practical aerodynamic flows that are of interest are three-dimensional 
with strong vortical regions and generally far from equilibrium. Computing these flows 
requires the use of Reynolds stress transport models. While these models contain im- 
proved capabilities for the stress anisotropies and the associated strain histories, their 
computational stiffness has lessened their appeal to the general user community. The 
purpose of the present work is to develop a versatile means of implementing Reynolds- 
stress transport models into aerodynamic codes for general application to high-speed 
compressible flows. The development of such a numerical capability will allow for the 
unambiguous comparative testing and evaluation of closure models using the same 
numerical procedure as well as the same physical and numerical boundary conditions 
on the same computational grid. 

II. N U M E R I C A L  F O R M U L A T I O N  

The Favre-averaged mean Navier-Stokes and turbulent transport equations can be 
written in vector form in an arbitrary coordinate system (~, y, C) as [1]: 

ot + o~ + o~ + oC - s, (1) 

where (~ is the vector of dependent variables 

= Q = j -1 {p, pu, pv, pw, pE, pT~j, p~}r, (la) 

Tij represents the six independent components of the Reynolds stress tensors, F, G, H 
are the inviscid (convective) fluxes, F., G., H~ are the viscous (diffusive) fluxes, and 
S represents the source terms due to production, destruction, and redistribution. 

An equation of state is required to complete the system of equations. The perfect 
gas equation of state is used in this study: 

P = ( ~ _ l ) b  E _ lp(u~ + v~ + w~) _ pk] (2) 
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The presence of the turbulent kinetic energy term, pk, in the equation of state arises 
from the Favre-averaging and creates a strong coupling between the mean equations 
and the normal Reynolds-stress components for the Reynolds-stress models. 

II .1 Disc re t i za t ion  

The semi-discrete, finite-volume form of Eq. (1) is written as: 

(aO/at)ijk q- [(/~ - -  Fv)V~/J]i+,/2,d,k - -  [(/~ - -  l~v)V~/J]i-1/2,j,k 
q-[(G-  Cv)VlT/d]i'J+l/2'k - -  [(G - -  G~)VTI/J]iJ-'/2'k (3) 
+ [ ( / / -  K )V¢l,l]~,~,k+ll~ - [ ( / / -  K )V(I,S]~,s,~-~12 

-(~/J)~sk = o 

where the fluxes are defined at the interfaces of the computational cell bounding the 
cell-average value, Qijk. 

Second-order spatial accuracy for the inviscid terms is attained by using the 
MUSCL scheme of van Leer [2]. The variables interpolated are p, ul, p, ~-id, and ¢. 
The rain-rood limiter [3] is used to avoid spurious oscillations in the neighborhood of 
a discontinuity. Other limiters are available and will be investigated in future work 
to improve monotonicity and convergence behavior. 

The remaining terms to be discretized are the diffusive fluxes and the source terms. 
Consistent with the elliptic nature of the diffusive fluxes, a finite-volume representa- 
tion of a second-order accurate central-difference operator [3, 4] is employed. Deriva- 
tives required in the diffusive flux evaluation at the cell interface are approximated 
with Gauss's divergence theorem by integrating around an auxiliary cell centered at 
the interface. Flow variables required at this interface are obtained from arithmetic 
averaging of neighboring cell averages. Derivatives required for the source terms are 
also calculated using Gauss's divergence theorem by integrating around the compu- 
tational cell. 

To accomodate geometrically complex configurations, we implement a multi-block 
procedure which requires C o grid continuity. Time integration is performed using an 
implicit spatially factored approximate factorization scheme. 

II.2 Roe Flux-Difference Splitting 

The interface flux for the finite volume formulation is calculated in each of the three 
coordinate directions as the solution of a locally one-dimensional Riemann problem 
normal to the cell interface using Roe's flux-difference splitting [5]. 

The Roe-averaged variables are 

/3 = ~ (4a) 

where 
¢ = {H, u, v, w, r~j, k, ~}T 

(4b) 

(4¢) 
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The interface flux can be written as the average of the interface flux calculated from 
the left state crossing negative running waves and the right state crossing positive 
running waves: 

=  [FR + YL - (OR- 0L)] (5) 
This may be written in a more computationally efficient manner as 

Fi+l/2 = -~[FR J¢ EL -- E IAFI] (6) 

where the flux differences can be derived as: 

]AF~-I _~ -/~y-[(Ap--Ap/a~2){1, fi, ~), t~, q2/2+ ]¢, 7"i~ , ,}T 

+ ~ {O, A u -  ..A-U, Av - ..A-G, A w -  it.A-U, £tAu + ~Av + ~ A w - O  AU + Ak, Ar,,, A .}  T] 

(6a) 
{ }" 

(6b, c) 
with A(.) = ( ' )n - (')L- 

III .  R E S U L T S  

An initial test case using Shima's [6] Reynolds-stress model for two-dimensional 
flow over a 10 ° compression ramp is presented. The ramp flow is Mach 3 with a mean 
flow Reynolds number of 10 x 106 and adiabatic wall conditions. The free-stream 
temperature,  Too, is set at 300°K. 

The wall boundary conditions are specified as zero velocity (ui = 0) and zero 
Reynolds stresses (rlj = 0). At the wall, the pressure is extrapolated from the in- 
terior solution with a zeroth-order extrapolation, and the solenoidal dissipation rate 
is equated to the second derivative of the turbulent kinetic energy (a consequence 
of evaluating the turbulent kinetic energy equation at the wall). The domain is dis- 
cretized using a 101 by 51 mesh, with high grid clustering in the near-wall region. 
The mean velocity and turbulent Reynolds stresses (kinetic energy) that are shown 
are all normalized by the free-stream mean density and free-stream mean velocity. 

The mean velocity profiles are shown in Fig. 1. These profiles are the Favre- 
averaged Cartesian mean velocities fil = (~, ~, 0) with the domain set between x = 0.0 
and x = 1.0. The start  of the ramp is located at x = 0.5. The four stations show 
one set of profiles upstream of the ramp (x = 0.396), a second at the start  of the 
ramp (x = 0.499), a third slightly downstream of the ramp (x = 0.598), and a fourth 
further downstream along the ramp (x = 0.808). The flow is near separation at the 
start  of the ramp, as seen in the x = 0.499 plot. 

The streamwise variation of the turbulent kinetic energy, obtained from the trace 
of the normal stress components of the Reynolds stress tensor, is shown in Fig. 2. 
The downstream development of the turbulent kinetic energy is clearly altered by the 
presence of the ramp. The ramp causes an increase in the turbulent energy away from 
the wall at the expense of the peak energy level near the wall (x = 0.499). Further 
downstream, the profile recovers and tends toward its flat-plate distribution. 
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The only component of the Reynolds shear stress to survive in this two-dimensional 
flow is the ~-~y component. Figure 3 shows its variation with downstream distance. 
The shear stress profile is similarly affected by the ramp start as the kinetic energy. 
In addition, downstream of the ramp start~ along the ramp, the Reynolds shear stress 
goes positive in the near-wall region. While some regions of positive shear stress may 
be expected near the point of separation, the wide streamwise extent of the positive 
shear stress values is questionable. This effect is probably due to an imbalance 
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Figure 2: Variation of turbulent kinetic energy profiles for 10 ° compression ramp. 

of terms in the near-wall model and/or the grid resolution in this region. Shima's 
Reynolds-stress model was developed for incompressible flows and may prove to be 
inadequate for compressible, high Mach number flow fields with a simple variable 
density extension. 

IV. C O N C L U D I N G  R E M A R K S  

The theoretical development of turbulence closure models has become widespread, 
and it is becoming increasingly apparent that the wide variety of models that have 
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been proposed need to be carefully evaluated. In order to do this in a precise, unam- 
biguous fashion, it is necessary to test the various models using the same numerical 
algorithm with the same physical and numerical boundary conditions on the same 
computational grid. The present numerical algorithm has been developed for the 
purpose of solving compressible turbulent flows using phenomenological turbulence 
models. The procedure outlined has been for Reynolds-stress transport equations 
which, when coupled with the mean conservation equations, leads to the solution 
of 12 partial differential equations to determine the compressible flow field. This 
capability will allow for the application of such models to the solution of complex 
compressible flow fields. 
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1 Introduction 

In the past decade, direct numerical simulation (DNS) of transition to turbulence has 
attained considerable maturity for incompressible flows, now complementing theoretical 
analyses and physical experiments; however, the physics of compressible flow have 
rendered DNS of transition at high speeds a formidable task, subject to many numerical 
obstacles [1]. Efficient semi-implicit algorithms, extremely successful for incompressible 
flows, are not readily adapted to the compressible Navier-Stokes equations (CNSE). 
Consequently, nearly all simulations of compressible flow are fully explicit and are subject 
to both advection and viscous constraints on the time step. At very high speeds, the 
dominant (second) instability modes are of high frequency and slow growth, so that 
simulations must be highly resolved in time for many disturbance periods. Moreover, the 
second-mode eigenfunction has a double structure, which necessitates high resolution both 
at the wall and near the critical layer (Fig. 1). Finally, dissipative methods typically used 
in aerodynamic applications for shock capturing are inappropriate for DNS. A conservative 
estimate is that DNS for high-speed flow requires an order of magnitude more computer 
time than that of a comparable simulation of incompressible flow. 

Although it is generally accepted that spatial DNS is the correct computational 
analog of forced transition experiments, spatial simulation of the complete laminar- 
turbulent transition process remains beyond the capability of existing supercomputers. 
For convective instabilities, however, temporal DNS (TDNS) has attained notable success 
(e.g.,[2]) for incompressible flow. Here, due party to algorithm improvements, which 
address many of the issues above, and partly to a generous grant of supercomputer 
time on the National Aerodynamic Simulator (NAS), we have been able to conduct, for 
the first time, long-term temporal simulations of laminar breakdown for the high-speed 

• axisymmetric boundary layers along a hollow cylinder in a Mach 4.5 flow and a sharp 
cone in a Mach 8.0 flow. From initial states perturbed by "second-mode" primary and 
subharmonic secondary (H-type) disturbances, these well-resolved temporal calculations 
proceed well into the laminar breakdown regime, characterized by saturation of the 
primary and secondary instability waves, explosive growth of higher harmonics, rapid 
increase in the wall skin friction, and rapid decrease in the shape factor. 
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2 Numerics 

In TDNS one examines a small "window" within the flow field in which disturbances 
are assumed to be spatially periodic and to evolve in time. Mathematically, TDNS 
is characterized as an Initial-Boundary-Value-Problem (IBVP). Details of the numerical 
method, nondimensionalization, and boundary and initial conditions can be found in 
[3,4], summarized below. 

Coordinate System and Governing Equations. In the body-fitted coordinate system 
(z, 0, z) shown in Fig. 2, the compressible Navier-Stokes equations assume the con- 
servative formulation given in [3,4], appropriate for either flat-plate, hollow-cylinder, or 
sharp-cone geometries. For convenience, we cast the energy equation in terms of pressure. 

Initial and Boundary Conditions. Parameter studies based on temporal linear stability 
theory (LST) [5] and on secondary instability theory (SIT) [6,7] identify subharmonic 
secondary instability triggered by a second-mode primary instability as a likely route 
to transition at very high speeds. Accordingly, the initial condition is formulated by 
the superposition of the mean flow (assumed to be parallel), an axisymmetric second- 
mode primary disturbance (Fig. 1), and a subharmonic secondary disturbance ensemble 
of four wave components. The mean flow is obtained from the spectraUy accurate 
boundary-layer code of [8]. Following [9], small forcing terms are subtracted from 
the governing equations to exactly cancel the initial steady-state residual due to the 
parallel-flow assumption. Regarding boundary conditions, periodicity is imposed in the 
streamwise and azimuthal directions. At the wall, no-slip conditions are imposed on 
velocities, temperature is assumed to be constant at its adiabatic-wall value, no condition 
is imposed on density, and pressure is derived from the equation of state. At the far-field 
boundary, disturbances are assumed to vanish. 

Spatial and Temporal Discretization. For the long-duration simulation of instabil- 
ity waves, it is essential that dissipation and dispersion errors be kept extremely small. 
For this purpose, spectral methods and high-order central-difference schemes are well 
suited. In the periodic streamwise and azimuthal directions, we exploit Fourier spectral- 
collocation methods [10]. In the wall-normal direction, an option exists to compute deriva- 
tives either by Chebyshev spectral collocation or by the 6th-order compact-difference 
method of [11] with boundary stencils modified according to [12]. Due to numerical 
stability considerations, the latter method is favored for long-duration simulations. A 
finely tuned pair of analytic mappings in z concentrate grid points at the wall and near the 
critical layer [9] where sharp gradients exist. With adequate resolution and appropriate 
mapping parameters, disturbance growth rates extracted from the TDNS are accurate to 
5-6 significant digits, relative to LST and SIT. In the azimuthal direction, the option ex- 
ists to invoke symmetry, whereby the computational effort is reduced by a factor of two. 
Present results were obtained with symmetry enforced. No de-aliasing procedure is im- 
plemented in the present calculations. Rather, the computations are kept "well-resolved" 
at all times, with grid refinements as necessary, based on criteria involving the decay of 
the Fourier (Fig. 3) and Chebyshev spectral coefficients. Temporal advancement is fully 
explicit, by means of a 3rd-order, low-storage Runge-Kutta method [13], for which the 
time step is maintained automatically at its maximum allowable size, based on numerical 
stability analyses of model advection and diffusion problems. 
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3 Results 

Due to space limitations, we present results of the Mach 4.5 simulation only. The 
geometry is a hollow cylinder (if=0 in Fig. 2) with a sharp leading edge, the axisymmetric 
an'dog of the fiat plate. The curvature (i.e., the ratio between boundary-layer displacement 
thickness, 8% and radius) is 0.1. Reynolds number based on edge conditions and 8' is 
10,053. Constant values of 1.4 and 0.7 are assumed for the ratio of specific heats and 
the Prandtl number, respectively. Viscosity and thermal conductivity vary according 
to Sutherland's law. Edge temperature is l l0°R. The wavenumbers (a, fl) (based on 
8*) defining the primary (a, 0) and secondary {(a/2, +fi), (3a/2, +fl)} disturbances are 
(2.53,2.10). Initial RMS amplitudes (relative to freestream temperature) of the primary 
and secondary disturbances are 8.5% and 1.7%, respectively. 

The simulation was initiated with a relatively coarse resolution of 12×6×96. Fi- 
nal resolution was 96×48×144, for which the computation consumed about 12 CPU 
hours/period on a Cray Y-MP, and beyond which it was deemed impractical to refine 
further. At its termination at about 59 periods of disturbance oscillation, the simulation 
had advanced well into the breakdown stage of laminar-turbulent transition, as indicated 
by saturation of the fundamental (!,0) and secondary modes {(1/2,1),(3]2,1)} (Fig. 4), 
explosive growth of higher harmonics (not shown), rapid increase in the skin friction 
coefficient, Cf (Fig. 5a), and rapid decrease in the shape factor, H (Fig. 5b). 

Flow visualization reveals that the numerical results qualitatively replicate two previ- 
ously unexplained phenomena observed in high-speed transition experiments: the appear- 
ance of so-called "rope-like waves" [14] and the "precursor transition" effect, in which a 
region of transitional flow originates near the critical layer and spreads toward the body 
at a relatively constant shallow angle (Fig. 6) [15]. "Schlieren" images, numerically gen- 
erated from the DNS data, clearly show structures of remarkably "rope-like" appearance 
at the onset of laminar breakdown (Fig. 7). Additional flow-field analyses, including 
video sequences, reveal the rope-like waves to be artifices of secondary instability which 
arise from the two-dimensional projection of staggered "lambda"-vorfices. Moreover, 
Reynolds stresses spatially reconstructed from the temporal data, via a "Gaster" transfor- 
marion (Figs. 8), show the precursor transition effect to be a highly nonlinear phenomena 
unexplained even qualitatively by linear theories (Figs. 8a,b). Whereas SIT accounts for 
a Reynolds stress peak near the critical layer (Fig. 8b), only the fully nonlinear simulation 
predicts the migration of the Reynolds stress peak toward the wall (Fig. 8c), as observed 
in experiments (e.g., [15]). 

The dominant role played by the (0,2) mode in Fig. 4, suggests an interesting 
numerical experiment: how does suppression of streamwise vorticity affect transition? 
To obtain Fig. 9, we have repeated the simulation with the same initial conditions, 
but with the energy in the (0,2) mode artificially suppressed by zeroing its contents in 
Fourier space at each Runge-Kutta stage. Figure 9 compares the energy contents of the 
fundamental and principal subharmonic modes of this "adulterated numerical simulation" 
(ANS) with the DNS. For the ANS, the primary and secondary disturbances saturate at 
energy levels at least an order of magnitude lower than when the (0,2) mode is present. 
Moreover, after 80 periods, there is less than a 5% change in either H or Cf, indicating 
that transition has not yet commenced in the ANS. The numerical results suggest that 
streamwise vorticity is essential to laminar breakdown. 
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1.Introduct ion 
The need for advances in the technolgy of high-speed vehicles has spurred vigorous 

activity in tile field of compressible turbulence. Ill the present paper, we investigate 
compressibility effects ill a shear flow through a direct lmmerical simulation (DNS). 
Both spectral and higher-order finite difference schenles are used and their relative 
merits are discussed in the paper. 

The particular flow that we consider is tlomogeueous sheai" flow. Homogeneous 
shear flow refers to the problem of spatially homogelmous turbulence sustained by a 
parallel mean velocity field g = (,5'x.2, 0, 0) with a constant shear rate S (of. Fig. 1). 
Although, it is a simplification of the inhomogeneous fi'ee shear layers encountered 
in practice, it is all attractive model problem because the crucial mechanisms of 
sustenance of turbulent fluctuations by a mean velocity gradient, and the energy 
cascade down to the small scales of motion are both present in this flow. DNS has 
been used to study homogeneous shear flow by Rogalto (1981), and Rogers and Moin 
(1987) for the incompressible case. Recently, Blaisdell, Mansour and Reynolds (1991) 
have performed DNS for the compressible case. 

In compressible turbulence, density fluctuations and waves propagating with the 
speed of sound are generated by the solenoidal velocity fiehl which then interact with 
the underlying, vortical turbulence. The acoustic velocity component can exhibit 
wave-steepening and a tendency to form shocks. Furthermore, discretization errors 
ill the velocity field Call lead to the computed density fieht violating the positivity 
requirement on the density. Thus, DNS of compressible flows has more stringent 
requirements than corresponding incompressible flows. 
2. Numerical  M e t h o d  

The compressible Navier-Stokes equations are nulnerically solved using a spectral 
collocation technique. Adopting the approach of Rogallo (1981), explicit dependence 
on the mean flow ul is removed by writing the equations in x~, a frame of reference 
moving with the mean flow. The relation between :r~" and the lab frame xl is 

X 1 = X 1 S t : r 2  , ' * - -  , r  2 ---~ X 1 , "r 3 ~ x 3 

Here S denotes the constant shear rate ilia. Since the governing equations do not 
have ally explicit dependence on the spatial coordinates a.i,"* and because the homoge- 
neous shear flow problem, by definition, does not have any boundary effects, periodic 
boundary conditions are allowable on all the faces of the coml)utational box. The 
periodic boundary conditions allow Fourier basis functions for the spatial discretiza- 
lion and consequently the derivatives are evaluated with spectral accuracy. Since the 
nonlinear terms in the governing equations are computed in physical space (a feature 
of collocation methods), aliasing errors occur. The aliasing error can be removed 
by appropriate truncation of the higher wave number modes. Since truncation as 
a tool for dealiasing is unavailable for non-periodic domains, we perform numerical 
experiments to determine the necessity of dealiasing in turbulence simulations 
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Recently, higher-order compact finite ditrerence schemes have been used for the 
simulation of turbulent flows. Finite-difference schemes are attractive because (1) 
they are better suited for complex geometries, (2) they are more amenable to par- 
allelization due to less communication requirements than FFT's, and (3) they are 
cheaper for a fxed number of points. However, these finite difference schemes, though 
higher-order than those generally used in CFD, lead to a less accurate estimate of 
derivatives relative to a spectral method. Thus, it is of interest to determine whether 
the higher discretization error incurred with the compact scheme outweighs advan- 
tages such as less computational cost. We compare a sixth-order compact scheme 
proposed by bele (1989) with the spectral collocation method in this paper. 

The time advancement scheme for a DNS must meet criteria regarding accuracy, 
stabilility and storage. A third-order, low storage, Runge-Kutta scheme is used here. 
Numerical experiments have shown that a CFL nmnber of 0.5 gives acceptable accu- 
racy for velocity and thermodynamic spectra. 
3. Spec t r a l  vs. a h lghe r -o rde r  f ini te  difference scheme 

In this section, we compare results of the spectral collocation nethod with those 
of a sixth-order compact scheme proposed by Lele (1989). The 6th order compact 
method evaluates the first derivative(f/) and second derivative (f") at node i by 
solving the tridiagonal implicit system 

1 , 14 f i + l - f i - 1  
f" + 5 (f~-' + f[+') = - - (  -2E; 

,, 12 fi+l - fi-1 
f;' + (f;'-' + = -( 

1, fi+'a - fi-2 
+ g t  )57.  ) 

a , f i + 2  - f l - 2  
+ ]7 t j (1) 

The stencil for evaluation of derivatives is relatively compact, however there is the 
added expense of (tridiagonal) matrix inversion. The compact scheme, Eq. (1), re- 
quires about 35 CPUs/iteration while the Fourier collocation scheme requires about 
50 CPUs/iteration. However, with respect to computing the first derivative of a given 
field , the highest 'resolvable' wave number on a N 3 grid is approximately N/4 for 
the compact scheme, compared to N/2 for a Sl>e,'tral schem('. 
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moments and pointwise variables for a 9@ simulation. Fig. 1 shows the deviations of 
the compressible (dilatational) spectrum EO(k) and the inco,npressible (solenoidal) 
spectrum El(k) from corresponding results of the spectral method. The comparison 
is at a non-dimensional time of St = 5 when the turbulent Reynolds number Re~ -- 30 
and the turhulent Mach numher Mt = 0.38. Though the error is negligible for k < 24, 
it is high for the larger wave nmnbers. Thus, single-point statistics dominated by 
large scales such as kinetic energy and Reynolds stresses are represented well by 
the compact scheme. For example, the turbulent kinetic energy K deviates by only 
0.05% fi'om the spectral result. The enstrol)hy w~w~ and the turbulent dissipation rate 

deviates by about 5%. It is interesting that the much larger discrepancy in the small 
scale statistics does not significantly contaminate a large scale quantity such as K. 
Higher-oder moments of velocity gradients are more sensitive to the accuracy of the 
discretization scheme. Figs. 2-3 compare the skewness and flatness of dilatation d ~ = 
V. u and spanwise vorticity w~ obtained by the two numerical schemes. The skewness 
and flatness of w~ do not differ much between the two schemes. However the compact 
scheme gives significantly lower values for the dilatation skewness and flatness. This 
is related to the irrotational velocity being more skewed and intermittent than the 
rotational field. Fig. 4 shows the evolution of maximum vorticity. This is a pointwise 
quantity in contrast to the volume-averaged statistics considered in the previous 
figures. The compact scheme gives values which are somewhat Rower than the spectral 
scheme. 
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Fig. 4: Evolut ion  of m a x i m u m  vorticity. 

4. An eva lua t i on  of  t r u n c a t i o n  as a too l  for  dea l ias ing  
Tile evaluation of non-linear terms in the governing equations in physical space - 

a feature of collocation methods - leads to aliasing errors. The necessity of dealiasing 
for retaining accuracy (cf. Can,,t,o et M.(1988)) is a controversial issue. There. are 
theoretical results which show that the aJiasing error is of the same order as tile trun- 
cation error. In this section we consider the effect of dealiasing by spectral truncation. 
For quadratic products such as uu  which occur in the incompressible Navier-Stokes 
equations, retaining only the lowest two-third of the resolved wave numbers leads to 
dealiased results. For dealiasing cubic products such as puu only one-half of the re- 
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solved wave numbers showld be retained; however, because of relatively small density 
fluctuations in the simulations we use the two-third rule. 
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Fig. 5: Effect of dealia~kng on the 
spectrum of the solenodied velocity. 
Elapsed time is St=5. 

1.0 

o.5 

0.0 

-0.5 

. . . .  Case 1 
Case 2 ,, 

/ e  

o s  a 

a • 

I " " " I • • • . I I " * * II I * ' 

0 5 10 15 20 

Time 

Fig. 6. Compress ib i l i ty  effect  on 
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Fig. 5 contrasts the solenoidal velocity spectrum E1(k) from a dealiased run to 
an aliased run; both runs were performed on a 963 grid. The difference in the range 
of interest 0 < k < 32 is small and restricted to a smMl band of high wave nmnbers. 
The spectrum in the dealiased 963 case does not decay in the highest wave numbers, 
25 < k < 32, as fast as the non-dealiased case. This suggests that the truncation of 
the highest one-third of the spectrum for the purpose of dealiasing (wave numbers 
32 < k < 48 in this case) may lead to inaccuracies' in turbulence simulations due to 
the removal of a physically required sink for the energy cascade down the spectruln. 
A 1283 simulation with the same initial data was performed to check this possibility. 
The high-resolution calculation (dash -dotted line in Fig. 5) is indistinguishable fl'om 
the 963 aliased run confirming that, at least for this particular flow case, spectral 
truncation (for dealiasing) may deteriorate the accuracy of the computation. 

Second-order moments such as K and e show slight differences between the aliased 
and dealiased cases. However, higher-order moments, especially for the irrotational 
component are significantly underpredicted by the procedure of dealiasing through 
truncation. 
5. Compres s ib i l i t y  effects in h o m o g e n e o u s  shear  flow 

Detailed results regarding the influence of compressibility in holnogeneous shear 
simulations are avilable in Sarkar, Erlebacher and Ilussaini (1991, 1992). A brief 
resume of the results is given here. A primary conclusion of the study is that the 
growth rate of the turbulent kinetic energy decreases with increasing compressibility 
- a phenomenon which is similar to the reduction of turbulent velocity intensities 
observed in experiments on supersonic free shear layers. Fig. 6 shows the time evo- 
lution of turbulent kinetic energy K for two cases. At time t = 0, both cases have 
identical solenoidal velocity fields, zero density fluctuations, and identical pressure 
and temperature fluctuations. However, Case 2 has half the mean speed of sound of 
Case 1. The initial Mt is 0.2 and 0.4 for Cases 1 and 2, respectively. It is clear from 
Fig. 2 that Case 2 has a reduced growth rate compared to Case 1. We note that 
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the reduction of kinetic energy growth rate with increased compressibility is a cousis- 
tent trend in all our simulations. The If transport equation was considered in order 
to understand this compressibility effect. There are two new terms - the pressure- 
dilatation and compressible dissipation - in tile It" equation. The pressure-dilatation 
transfers energy from the velocity field to the pressure field in homogeneous shear 
flow, while the compressible dissipation represents dissipative effects of dilatational 
motion. It seems that sinks provided by the pressure-dilatation and compressible 
dissipation, along with reduced production by the Reynolds shear stress contribute 
to the reduced growth rate of kinetic energy. DNS has been helpful in developing a 
model for the compressible dissipation based on a low-Mach number asymptotic anal- 
ysis, and for modeling the pressure-dilatation (see Sarkar(1992)) based on analysis of 
the Poisson pressure equation in compressible flow. 

Since both cases start with incompressible initial data, it is of interest to know 
how 'compressible' does the turbulence become? The turbulent Mach nmnber Mt and 
the normalized rms density p ..... /~ are measures o[ departure from incompressibility. 
The largest Mt and p ..... /~ obtained in the simulations are 0.6 and 20% respectively. 
We note that M~ = 0.6 is larger than tile turbulent Mach numbers encountered in 
supersonic and hypersonic shear layers and boundary layers. For purposes of theo- 
retical analysis, and analysis of the numerical data, it is convenient to separate the 
stochastic variables into compressible and incompressible components. For homo- 
geneous flow, the Helmholtz decomposition gives a unique partition of the velocity 
field into incompressible (solenoidal) and compressible (irrotational) components by 
u = u l +  u c, where V-u  I = 0 and V × u c = 0. Similarly, it is possible to decompose 
the pressure field into p = pl + pO where fluctuating density effects are contained in 
the compressible pressure pC. DNS shows that although u c has rms values which 
are typically less than 15% of u I, the rms pC is as large as pl. One of the important 
characteristics of tile velocity field is the extent and topology of supersonic regions. 
Flow visualization of the database has shown that supersonic regions occur in small 
discrete patches which are elongated in tile streamwise direction. It has been theo- 
rized in the past that, at high enough turbulence Reynolds number, some of these 
supersonic regions may be associated with eddy shocklets. 
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NUMERICAL INVESTIGATION OF TURBULENT FLOW IN 
BOUNDARY LAYER AT DIFFERENT REYNOLDS NUMBERS 

I. Simakin, S. Grubin 

INTECO srl, Via Mola Vecchia 2A, 03100 Frosinone, ITALY 

Incompressible viscous fluid flow in a boundary layer on a flat plate with a zero 
pressure gradient is considered. It is assumed that the undisturbed flow does not 
depend on the streamwise x variable, i.e. local-parallel approximation used. At the 
initial time moment three-dimensional disturbances (Tollmien-Schlichting waves 
with small amplitutde) is imposed on the laminar flow. These disturbances seem 
to be periodic in x, y - directions and exponentially decaying in the external flow 
in the normal z-direction. The time evolution of the flow from laminar up to 
developed turbulent regime was computed by means of direct integration of the 
problem for 3D Navier-Stokes equations. To integrate this problem in time the 
following semi-implicit scheme is used: 

(s) (s- l )  (s) (s) (s) 
(V k÷~ -Vk) / ' c  = F  [V k+~x=] - L - VP  + (l/R) D (1) 

(s) 
~7 V k+l = 0 (2) 

where V = (u, v, w) is the velocity disturbance (main flow (U B (z), O, O) is produced 
• as a result of the action of the "force" f = (-(1/R)U" B (z), O, 0,), U B (z) is the Blasius 
velocity profile), 

(s) (s) (0) 

V k.1/2 = (V k+l + V k) /2,  V k+1/2 = 2V k _ Vk-1/2, S __-1 is number of iterations, 

P = p  + (1/2)V 2,p is the pressure; F[V] = [V,o ] ,o  = [V,V] is the vortex 
(s) (s) (s) (s) (s) (S-l) 

Let V = V k+l/2 then:L = U B a V / a x - i U ~ ( w - 2 w )  
(S) (S) (S) (S-1) (S-l) (S-1) (S) 
D =(a~lax ~+a~lay ~) [ V - k ( w -  w) ]  +a~/az ~ ( / ~  + j  ~ + k w )  

(0) 
6 = (L~ + u k)/2, ~ is found from the following equation: 

(S-1) (1) 
= u k ÷ ( 'r/2R)~/az2(u ÷ uk), (I - u  k÷l12 for S _> 2; 

(o) (s-l) 

~, ~ are calculated in the same way. 
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(s) (s) 
The following boundary conditions are stated for:t~, ~, V k+l, p 

V(x, t)I,=0 = 0, (3) 
V(x,t) ]z~= --" 0(exp), 

The problem (1) - (3) is written in dimensionless variables that are related with 
dimensional ones in the following way: x. = x6, t. = t&/U=, I/. = VU=, p .  = p U  2 
where: 6 = ( v f /U=)  ~, ~ is the distance from the leading edge to the integration 
domain, U= is the flow velocity at z ~ co, v is the kinematic viscosity coefficient, 
the Reynolds number is: R = U=&/v = (R)'/" The following criterion is used to exit ~ ' ' X /  " 

from iteration process: 
(s-l) (s) 1 x v = 

--Is0so <(F [V k+l/=], V k+l/=)> < s where < .> ,  = <.>xv= XY d x d y d z  

Schemes (1), (2) at S_>2 have the second order of accuracy on l-. To approximate 
(1)-(3) in streamwise and spanwise directions x, y the spectral method is used. 
In normal the direction the collocation method with transformation of variable 
z = cl z + c 2 ~k, k ___ 2 is used (the line for z is dropped in the following 
consideration). The approximate solution is sought in the form: 

M N Q 

= V~,,q.Em,(x,y) .Hq(z) ,  
m = - M  n =-N q =1 

p k (x) = ~ o e -z/2+ ~ Pmnq'k . Hq(z) • Emn (x,y), 
m=-M n=-N q = l  

(4) 

where: Era, (x,y) = exp ( ia m x + if3,y), a m = aom, [~n = [30 n,  Olo = 21[/X~ [~o = 2r[IY, 
Hq(Z) = ze -z/2 Lq.1(z), Lq(z) = Laguerre polynomials. It is seen from (4) that the 
approximate solution satisfies the boundary conditions (3). 

By means of the spectral analysis [1, 2] the investigation of the stability and 
accuracy in the linear approximation was performed. The spectral characteristics 
of the linearized differential problem (the eigenvalue problem for the 
Orr-Sommerfeld equation) were calculated. The same was done for the linearized 
scheme (1)-(4), i.e F - 0 (the scheme is called (1)-(4) as SCMB01). The 
comparison of the two spectra shows the accuracy and stability of the 
computational algorithm. A suitable time step and the necessary accuracy of 
space resolution are also estimated by this algorithm. 

The following scheme (SCMB02) was investigated. The convective terms were 
approximated in time using the Adams-Bashford scheme and for the rest of 
Navier-Stokes equations the Crank-Nicolson scheme was used; the space 
approximation was the same as for SCMB01. It should be noted that the 
schemes, which are analogues of the SCMB02, were used in a number of works 
where the initial stage of transition to turbulence in the boundary layer was 
investigated. 
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In this study the time evolution of the infinitesimal perturbations was considered 
and the solution of the linearized problems was presented as the Tollmien- 
Schlichting wave: 

V (x, t) = V (z) exp [i a (x - Ct) + i/3y] (for a = 0 V (x, t) = V (z) exp [i/3 (y - Ct)]) 

where a and/3 are the real values, and C is the complex value. 

In Table 1 for the supercritical Reynolds number R = 580 and various wave 
numbers ann = aom,/3n =/8on the senior (in the imaginary part) eigenvalues C of 
the Orr-Sommerfeld equation are shown (C corresponds to the exact values with 

the rounding accuracy). The eigenvalues C which were obtained for the two 
schemes with the number of collocation points Q time step T and the normal 
transformation parameters c 1, c 2, k (z = c1~ + c2~ k) are also shown. 

(s) (s) 

For scheme SCMB01, the values C are shown for the first and third iteration, C 
for S>__4 are practically the same as for S = 3. The comparison of C with the exact 
values shows, that at moderate numbers of points Q and comparatively large time 
step ~- the scheme SCMB01 is stable and has the high accuracy at transitional 
Reynolds numbers in a wide region of wave numbers. 

At the same parameters Q and T the scheme SCMB02 has a better accuracy (in 
comparison with SCMB01 at S =1) in the characteristic part of the spectrum 
where the physical instability takes place. It is due to the second order accuracy 
on T for this scheme. The significant failure of the SCMB02 scheme is the 
instability at large wave numbers (see Table 1). 

Table 1. R=580, ao=0.179, Po=ao/2; for schemes: Q=32, T=0.1, CI=0.1, C2=0.008, k=2 

(m, n) 
C 

for Orr-Sommerfeld 
problem 

(1, O) 0.3641229 + i0.0079597 

(0, 1) 0.0000000 - i0.0001543 

(1, 1) 0,8766307 + i0.0019978 

(2, O) 1.0000000 - i0.0006172 

(2, 1) 1.0000000 - i0.0006558 

(2, 2) 1.0000000 - i0.0007716 

(10, O) 1.0000000 - i0.0030862 

(0, 10) 0.0000000 - i0.0015481 

(10, 10) 1 .0000000- i0 .0038576 

(3o, o) 

(o, 3o) 

(30, 30) 

(s) 

for scheme SCMB01 

s = l  

0.3641041 + i0.0080793 

0.0000000 - i0 .0001667 

0.3766258 + i0.0021141 

0.9998932 - i0 ,0006193 

0.9998932 - i0 .0006579 

0.9998932 - i0 .0007735 

0.9973387 - i0 .0030135 

0.0000000 - i0,0015441 

0.9973378 - i0 .0037667 

1.0000000 - i0.0092586 0.9766679 - i0.0074687 

0.0000000 - i0.0046293 0.0000000 - i0.0046296 

1.0000000 - i0.0115733 0.9766021 - i0.0093339 

s = 3  

0,3641613 + i0.0079372 

0.0000000 - i0.0001667 

0.3766925 + i0.0019680 

0.9998932 - i0 .0006197 

0.9998932 - i0 .0006588 

0 .9998932- i0 .0007740 

0.9973427 - i0 .0030622 

0.0000000 - i0.0015441 

0.9973428 - i0 .0038276 

for scheme 
SCMB02 

0.3641598 + i0.0079475 

0.0000000 - i0 .0001667 

0.8766892 + i0.0019778 

1.0005344 - i0 ,0006090 

1.0005344 - i0 .0006476 

1.0005344 - i0 .0007634 

1.0136324 - i0,0016327 

0.0000000 - i0.0015441 

1.0136-359 - i0.0024232 

0 9 7 , , ~ 4 . , 0  0086362 ' :~i i~i~', ' , i~' , ! ' , i~i~i i~', i '  

0.0000000 - i0.0046296 0.0000000 - i0.0046296 

0 9769664-io 0107952 ~ i ~ i i i ~ i l i ~ i ~ i l  ' 
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Two runs were performed at R = 580 with the different intervals of periodicity: 
run 1 -X = Y = 2rd0.0895 
run 2 -X = Y = 2rc/0.03 

The initial energy of perturbations was sufficiently small in both runs, E o = 10 -3. 
A moderate number of basic functions were used in the solution representation: 
in x, y, z directions 63 x 32 x 63 for run 1, and 127 x 64 x 63 for run 2 (this 
number of basic functions was used during the last stage of the runs, i.e. for 
simulation of developed turbulent regime). The following transformation was used 
z =c lz .  + c2~ k, c 1 = 0 . 1 2 ,  c 2 = 0 . 0 0 3 ,  k = 2 ; t h e t i m e s t e p w a s T = O . 1 .  The 
CPU time per step for run 1 was 15 sec. with a total time of 20 hours on the 
CONVEX 201 and for run 2 was 51 sec. per step with a total time of 55 hours. 

At the initial stage of these runs, there is a weak nonlinear interaction and a slow 
rise of skin friction and pulsation energy may be observed. When the energy of 
pulsations reaches the critical value of about E ~ 10 .2 the transition to developed 
turbulent flow occurs which is accompanied by a sharp increase of friction and 
energy of pulsations (especially on the small scales). 

Fig. 1 illustrates the two-point correlations for streamwise component of velocity 
in the x-direction R,,,, (x), and for normal one in the y-direction R,,,,, (y) at z/6 t = 0.3, 
for runs 1 and 2; 6 t turbulent boundary layer thickness. The time averaging for 
these and other characteristics was performed at time interval At >_ 102. It may be 
observed that correlations are considered fall off to small values. The analogous 
result was obtained also for R,,,, (y), R,Jx) ,  Rw(x ), Rw(y ) at different points of z. 
Consequently, sufficiently large intervals of periodicity were chosen. 

The mean-values of skin friction, pulsation energy, profile of velocity, Reynolds 
stress and turbulence intensities, etc., in run 1 for developed turbulent flow, slightly 
differ from those obtained in run 2 (see Fig. 2). Moreover, these characteristics 
have a good conformity with experimental data (see Figs. 2, 3) and computation 
results [3]. The mean flow non-uniformity in streamwise direction were taken into 
account in [3], and a great number of basic functions were used in the solution 
representation (in x, y, z directions 170 x 128 x 42). It should be noted that 
turbulent regime at R = 680 (R e = 876) was obtained in a natural way, i.e. the 
transition from laminar to developed turbulent flow was simulated. 

In computations at Reynolds numbers R = 1000, 1400 the same number of basic 
functions was used as in run 2. Fig. 4 shows the experimental values of the local 
friction coefficient C'~ and the shape factor H for different Reynolds numbers R e [4]. 
Also, results of our computations and [3] are presented there. The value of C'f 
obtained for R e = 2550 is lower than the experimental value. Note that generally, 
mean characteristics of turbulent flows (velocity profile, second-order moments 
etc.) obtained at R e = 1640, 2550 are in satisfactory agreement with experimental 
data (see Fig. 3). 

In conclusion, it has been shown that within the framework of the model 
considered for the Navier-Stokes equations using the above method, it is possible 
to simulate turbulent flow in a boundary layer on flat plate in a wide region of 
Reynolds numbers. 
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N E A R - W A L L  T U R B U L E N C E  MODELS A N D  N U M E R I C A L  
S O L U T I O N  OF T H E  R E Y N O L D S - A V E R A G E D  N A V I E R - S T O K E S  

E Q U A T I O N S  USING U N S T R U C T U R E D  GRIDS 

L. Stolcis* and L.J. Johnston 

Department of Mechanical Engineering, UMIST 
PO Box 88, Manchester M60 1QD, England 

1. Motivation and Objectives 

The long term aim of the present work is the development of a numerical method 
to predict the flow around complex three-dimensional aerodynamic configurations. 
These flows are generally turbulent in nature and involve complex physical phenomena 
such as interacting shear layers, streamline curvature, shock wave/boundary layer 
interactions and extensive separation regions. The Reynolds-averaged Navier-Stokes 
equations for compressible flow must be solved in order to deal with these flows in 
a satisfactory manner. Further, the turbulent shear layers are not necessarily thin, 
which has implications for the choice of the turbulence model used to close the set of 
governing mean-flow equations. Fully-representative aerodynamic configurations also 
have a geometric complexity which makes the generation of a suitable computational 
grid a non-trivial task. However, unstructured computational grids offer a convenient 
means of overcoming these problems and are used in the present work. A number 
of issues related to integration of the turbulence model into the unstructured flow 
solver are currently being investigated using a two-dimensional method. This method 
has been successfully applied to the computation of multi-element high-lift aerofoils, 
both at low-speed and transonic flow conditions [1], [2]. The important issue of how 
to treat the molecular-viscosity dominated near-wall region is the particular aspect 
considered here. 

2. Numer ica l  Scheme 

A cell-centred, finite-volume spatial discretisation of the governing mean-flow and 
turbulence-transport equations is used, together with an explicit multi-stage time- 
stepping scheme to reach the steady-state solution. Numerical dissipative terms are 
added explicitly to the discretised mean-flow equations, in order to suppress odd-even 
decoupling and to enable clean capturing of shock waves. The magnitude of these ad- 
ditional terms is controlled within boundary layer and wake regions so as to minimize 
their influence on the viscous flow development. A high-Reynolds number formula- 
tion of the two-equation k-e turbulence model has been implemented to facilitate the 
computation of complex turbulent flowfields. This model requires the solution of two 
additional modelled transport equations, for the turbulent kinetic energy k and its 
dissipation rate e. The basic numerical algorithm adopted for the mean-flow equa- 
tions needs to be modified for application to the turbulent transport equations, due 
to stability problems associated with the strongly non-linear source terms appearing 
in the k and e equations. These problems have been overcome temporarily by using 
a first-order upwind spatial discretisation of the convective flux terms in the k and 

*Present address: CRS4, Via Nazario Sauro 10, 09123 Cagliari (Italy) 
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equations [1]. Extensive experience with the present method indicates that accu- 
rate solutions can be achieved provided that a second-order scheme is used for the 
mean-flow equations. The main point of concern with the flow solver is the use of 
wall function boundary conditions for the turbulence-transport equations~ since with 
this approach the molecular-viscosity dominated near-wall region is not resolved. 

3. Near-Wal l  Formula t ion  

For turbulent flow developing over a smooth flat plate in zero pressure gradient, 
experiments indicate that the velocity distribution across the fully-turbulent, near- 
wall region follows the semi-logarithmic law-of-the-wall 

UT/U~- = l n ( y + E ) / a ,  u.~ = ~/r,~,,/p~,~l,, y+ = ynu.~p/# (1) 

UT is the mean-velocity component parallel to the wall, u~ is the friction velocity, 
r~,ll is the wall shear stress and y, is the distance from the wall. g = 0.41 and E is a 
roughness parameter, equal to 9 for smooth walls. 

3.1 wall funct ion approach 

In this approach the turbulence-transport equations are solved only in the fully- 
turbulent region, by setting the first near- wall computational cell to be in the range 
30 < y+ < 300. The equations themselves are not solved in these near-wall cells, 
and it is assumed that there is local equilibrium between production and dissipation 
of turbulent kinetic energy. If the dissipation length scale is assumed to be directly 
proportional to y~, then the near-wall values of k and e become 

k =  = (2)  

where c, = 0.09 and u~ is obtained from the law-of-the-wall. The mean-flow equa- 
tions are solved in the near-wall cells together with the no-slip boundary condition, 
employing the wall shear stress obtained from the friction velocity u~. The wall func- 
tion approach is ideally-suited to implementation in an unstructured flow solver since 
information beyond the first computational cell adjacent to the surface is not required. 

3.2 low-Reynolds  n u m b e r  formulat ion 

The k and ¢ equations can be modified to enable their integration through the vis- 
cous sublayer to the wall, by introducing near-wall damping functions in the modelled 
source terms and the turbulent viscosity relation. Additional terms are also gener- 
ally required to ensure the correct behaviour of k and e in the molecular-viscosity 
dominated region. The resulting low-Reynolds number turbulence model removes the 
uncertainties associated with the wall function approach. However, such formulations 
require very dense computational grids near the wall, to enable resolution of the high 
near-wall gradients of turbulence quantities. The source terms in the k and e equations 
can become very large in this same region, increasing the stiffness of the discretised 
turbulence-transport equations and thereby reducing the stability properties of the 
numerical method. In order to circumvent these problems, it is possible to solve the 
k and e equations only in the high-Reynolds number regions, and use a low-Reynolds 
number one-equation model in the near-wall region. The attraction of a one-equation 
near-wall formulation is that such a model requires a less-dense computational grid 
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in the viscous sublayer region, increasing the computational efficiency and conver- 
gence properties of the numerical method. The near-wall part of the one-equation 
turbulence model of Mitcheltree et al [3] has been employed in the present work. In 
regions adjacent to the surface, where y+ <: 50, the mean-flow equations and the tur- 
bulent kinetic energy transport equation are solved, whilst the turbulent length scales 
are prescribed via algebraic relations. The turbulent viscosity coefficient #, and the 
dissipation rate of k in the near-wall region are given by 

Izt = c v p k l / 2 L ~ ,  , = k3121L, 

with L, and L, being two algebraic length scales 

(3) 

L~, = c l y , , [ 1  - e x p ( - R ,  I A ~ , ) ]  , L, = c,y,,[1 - e x p ( - R U 2 c ~ ) ]  

which involve a turbulent Reynolds number Rt 

(4) 

R ,  = pk i= ,,Iv (5) 
The damping functions in the two length scales are introduced to mimic the correct 
behaviour as the wall is approached, where the flow development is dominated by the 
molecular viscosity. The model contains two constants A~, = 70 and cl = ~c~ 3/4. The 
high-Reynolds number k - e model is employed when y+ > 50. 

4. Resul t s  and Conc lus ions  

A full description of the present numerical method together with an extensive 
evaluation is given by Stolcis [4]. Figures 1 and 2 show results comparing the two 
near-wall formulations for Cases 9 and 10 of the well-known RAE 2822 transonic 
aerofoil data-set. The surface pressure distributions show some small differences in 
upper surface pressure levels, and the one-equation near-wall formulation results in a 
more downstream shock wave location. The principal area of difference between the 
two formulations is in the upper surface skin friction distributions. The wall function 
approach produces too high levels of skin friction upstream of the shock wave, and 
fails to predict the experimentally-observed shock-induced separation for Case 10. 
The mean-velocity profiles predicted by the two near-wall formulations are in good 
agreement with each other, and agree reasonably well with experiment, apart from in 
the immediate vicinity of the shock wave. It can be concluded that the wall function 
approach gives acceptable results, apart from a reluctance to produce shock-induced 
separation, and so merits further investigation. 
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S I M U L A T I O N  O F  I N S T A B I L I T I E S  IN  A B O U N D A R Y  L A Y E R  
W I T H  A R O U G H N E S S  E L E M E N T  

G. Danabasog lu ,  S. Bir ingen and C. L. S t r e e t t  
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NASA Langley Research Center, Hampton, VA, USA 

1. I n t r o d u c t i o n  
The investigation of boundary layer instability in the presence of an isolated 

roughness element, and therefore increased receptivity of the boundary layer is a 
challenging computational problem. Individual roughness elements in a distributed 
roughness environment actually form quasi two-dlmensional effects at their lead- 
ing and trailing edges (Morkovin, 1990). Therefore, the case of the isolated, two- 
dimensional roughness element, which is the focus of the present study, has relevance 
to the problem of distributed roughness. 

Because of strong upstream influences~ the proper simulation of this prob- 
lem requires the use of the spatial approach. Several numerical studies, using the 
time-dependent, full Navier-Stokes equations succesfully simulated transition over 
smooth flat plates and in channels, assuming the temporal rather than the more re- 
alistic spatial evolution. Recently, due to increased capabilities of supercomputers, 
the spatial numerical simulations became feasible. Among the latter, Danabasoglu, 
Biringen & Streett (1991) developed a method to study the spatial evolution of 
instabilities and instability control in channel flows. In this work, we modified the 
numerical procedure of Danabasoglu et. al (1991) for boundary layer flows with 
a two-dimensional isolated roughness element to study the spatial development of 
instability waves, focusing on the effects of roughness size and roughness location. 
Recently, the experiments of Boiko, Dovgal, Kozlov & Shcherbakov (1990) showed 
that inviscid frequencies can exhibit greater amplification rates compared to the 
unstable Tollmien-Schlichting (TS) frequencies; therefore, we also investigated the 
effects of inflow frequencies. 

2. Solu t ion  P r o c e d u r e  
The present study considers the two-dimensional, time-dependent, incompress- 

ible, full Navier-Stokes equations discretized on a non-staggered, stretched grid by a 
mixed finite difference/Chebyshev collocation matrix method. The governing equa- 
tions are integrated by a time-splitting procedure which employs the implicit Crank- 
Nicolson scheme for the normal direction diffusion terms. All of the other terms 
are treated explicitly using a third-order, compact Runge-Kutta method (Streett ~¢ 
Hussaini, 1986). For the solution of the Poisson/Laplace equations, the capacitance 
matrix and eigenvalue decomposition methods are utilized. The inflow perturba- 
tions are obtained from the spatial modes of the Orr-Sommerfeld equation, and at 
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the outflow, the buffer domain technique is applied. The details of the numerical 
scheme are given in Danabasoglu et. al (1991). 

One of the difficulties associated with the roughness element simulations is 
the singularity at the corner points of the element. The singularity stems from 
the fact that the homogeneous Neumann boundary condition cannot be defined at 
the corner points. Although there are numerous methods in literature to alleviate 
this problem, we chose to apply the multidomain method given by Macaraeg & 
Streett (1986) along the normal direction. In this procedure, the corner points 
are assigned to the upper domain, thus eliminating the singularity by defining 
the normal direction implicitly. In addition, because each subdomain contains 
a separate set of Chebyshev polynomials, which can vary in number, as many 
collocation points as necessary can be applied independently in each subdomain. 
Consequently, expected sharp gradients in the vicinity of the roughness element can 
be resolved conveniently. 

The boundary layer simulations naturally require mesh clustering next to the 
wall in addition to the regular Chebyshev stretching. The application of the mul- 
tidomain method further necessitates the use of mapping functions along the normal 
direction, because the subdomains may not coincide with the Chebyshev interval. 

In all the cases, once the base flow is obtained using the total velocity equations, 
the perturbation equations are applied for the instability computations. 

3. R e s u l t s  and  D i s c u s s i o n s  
The simulations discussed in this section particularly consider the effects of the 

roughness size and roughness location; for this purpose, four different configurations 
are investigated. In each simulation, small amplitude perturbations are imposed as 
the inflow conditions and the growth rates of the instability waves, especially in 
the amplification region in the separation zone behind the roughness element, are 
computed and compared with the parallel linear theory. 

For the first two simulations in which two different roughness heights, s = 
0.09826* (small) and s = 0.2456* (medium), are considered, the elements are placed 
upstream of branch I (stable region) of the neutral stability curve of the Blasius flow; 
the local Reynolds number at the roughness location is kept at Re6. = 550. Here, 

= * 6* and t,* Re6. u*6*/r,* is the Reynolds number, and u~ ,  are the free stream 
velocity, boundary layer local displacement thickness and kinematic viscosity, re- 
spectively. The small roughness element simulations conducted at//e6g = 450 and 
wR = 0.063 reveal that the spatial development of the instabilities is not influenced 
by the presence of the roughness element when compared with the smooth plate 
computations obtained using the same parameters. Here, g~ is the boundary layer 
displacement thickness used as the length scale, and wR is the inflow perturbation 
frequency° 

The streamwise distribution of (uw~.,ns)m,~ for the medium roughness element 
case obtained with Re~g = 500 and wR = 0.07 is presented in Fig. 1 (curve A), where 
(ul~.~s)ma~ denotes the root-mea~a-square values of the streaznwise perturbation 
velocity, and the maximum is obtained along the normal direction. The figure also 
includes the distribution obtained from a simulation for the smooth plate with the 
same parameters (curve B). According to Fig. 1, we observe that the growth of the 
disturbances is slightly higher in the presence of the roughness element. However, no 
significant deviation from the smooth plate boundary layer distributions is observed 
throughout the computational domain. 
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In the presence of a roughness element, because the parallel linear stability 
analysis based on the most inflectional streamwise velocity profile indicated the 
existence of high frequency inviscid instability at high Reynolds numbers, for the 
subsequent simulation, we consider the medium roughness element and increase 
the disturbance frequency to wR -- 0.16, keeping the other parameters the same. 
Note that this value of wR is stable according to the linear theory. The ( u l ~ , ) ~  
distribution given in Fig. 1 (curve C) shows the decay of the instability waves 
in agreement with the linear theory. This behaviour is due to the insignificant 
deviation of the base velocity profiles from the Blasius distributions° 

Next, we investigate a case with a large roughness element (s = 1.01/~*), placed 
at Re~. = 712.8 which is in the unstable region of the smooth plate stability curve, 
and set Re6; = 625.2 and wR = 0.0928. Because wR is in the TS instability 
range, this case is referred to as the TS frequency case. The streamwise variation 
of (zt'rm,)ma~ (curve A in Fig. 2) shows significant amplification in the separation 
zone at this frequency and the instabilities attain finite amplitudes. In the linear 
region located in the separation zone (77.42 < z < 91.32) we measure the spatial 
growth rate of the disturbances as a !  - -0.12 which is significantly higher than 
the amplification rate for the Blasius flow (az = -0.11643 × 10-~). 

In order to compare the growth rates of high (inviscid) frequencies with TS 
frequencies, we consider a higher frequency disturbance field, wR = 0.1856, which is 
in the inviscid shear (mixing) layer instability range. Figure 3 presents the contour 
plots of ~t' (streamwise perturbation velocity) and w'z (spanwise perturbation vor- 
ticity) obtained after 26 TS periods. These figures show that the disturbances are 
amplified in the separation zone, and they attain finite amplitudes quite rapidly in a 
very short distance. The (~ts,.,,,,),,,,= distribution is also presented in Fig. 2 (curve 
B) for a comparison with the TS frequency case, revealing a higher growth rate 
(az -~ -0.19) than the TS frequency in the linear region in agreement with Boiko 
et. al (1990). The figure illustrates that the amplitude of the inviscid frequency 
case is about 6 times lower than the TS frequency case immediately upstream of 
the roughness element. In the next simulation, the (zts~,,~),~,= amplitude is matched 
for both frequencies upstream of the element by adjusting the inflow perturbation 
amplitude. It is observed that even though the measured growth rates are the same 
for both inviscid frequency simulations~ the disturbances reach higher amplitudes 
for the latter case (curve C in Fig. 2) confirming that for the same amplitude up- 
stream of' the roughness element, the shear layer frequency attains higher finite 
amplitudes in the separation zone compared to the TS frequency. Next~ we investi- 
gate the evolution of instabilities created by a lower frequency, oJR = 0.015, which 
is stable according to the smooth plate linear stability theory. The (u~,~,),~= 
distribution (curve D in Fig. 2) reveals the amplitude increase of the instability 
waves downstream of the separation zone which is associated with the wavelength 
conversion observed at this frequency. 

Finally, we place the medium roughness element in the unstable region of the 
smooth plate stability curve, at Re,. = 712.8, and investigate the effects of the 
roughness location and size. For this purpose, we use wR = 0.0928 and wR = 
0.1856. The (zt',m,),,,,= distributions for both cases, including the distributions 
from simulations with the same parameters for the smooth plate, are given in Fig. 4. 
The figure reveals no significant deviations from the smooth plate cases supporting 
the idea that significantly larger elements are necessary to instigate higher spatial 
growth rates. 

207 



4. C o n c l u s i o n s  
The computational procedure which involves the multidomain method was suc- 

cessfully used to study the spatial development of instability waves in the presence 
of a two-dimensional, isolated roughness element. 

The simulations disclosed that for the cases considered here, if the element is 
placed upstream of branch I of the neutral stability curve, the disturbances created 
by inviscid frequencies decay due to the small deviations of the base velocity profiles 
from the Blasius solution. Also, the study with the medium roughness element 
located in the unstable region of the stability curve revealed no significant variations 
from the flat plate distributions. 

The investigations with the large roughness element, placed in the unstable 
region of the stability curve, led to significant amplification in the separation zone 
for both TS and inviscid frequencies. However, the inviscid frequencies which are 
in the shear layer instability region disclosed higher amplification rates. 

Acknowledgemen t s  
This work was supported by NASA Langley Research Center under Grant 

NAG-I-ll61 and by ONR Grant No. ONR00014-91-J-1086. 

Refe rences  
BOIKO, A. V., DOVGAL, A. V., KOZLOV, V. V. & SHCHERBAKOV, V. A. 1990 

'Flow Instability in the Laminar Boundary Layer Separation Zone Created by 
a Small Roughness Element,' Fluid Dynamics 25, 12. 

DANABASOGLU, G., BIRINGEN, S. & STREETT, C. L. 1991 'Spatial Simulation 
of Instability Control by Periodic Suction Blowing,' Phys. Fluids A 3, 2138. 

MACARAEG, M. G. & STREETT~ C. L. 1986 'Improvements in Spectral Colloca- 
tion Discretization Through A Multiple Domain Technique,' Appl. Num. Math° 
2, 95. 

MORKOVIN, M. V. 1990 'On Roughness-Induced Transition: Facts, Views, and 
Speculations, ~ in Instability and Transition, Vol. I, edited by M. Y. Hussaini 
and R. G. Voigt, pp. 281-295, Springer-Verlag, New York. 

STREETT, C. L. & HUSSAINI, M. Y. 1986 'Finite Length Effects in Taylor- 
Couette Flow,' ICASE Report No: 86-59. 

0 . 0 1 0  

. . . .  T - i -  - - -  

. . . . . .  AB 

X 

0 . 0 0 1  . . . . . . . . . . . .  %. . . . . . .  

0 5 0  1 0 0  1 5 0  2 0 0  

Figure I. Streamwise distributions of (u'~,~),~=: with roughness, wR = 
0.07 (A), without roughness, wR = 0.07 (B), and with roughness, wR = 0.16 (C). 
Medium roughness element is located at x = 35.41 (Re6. = 550). The starting 
location of the roughness element is indicated by an arrow in the figures. 
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Figure 3. Contour plots of (a) u'  (contour intervals= 0.001) and (b) w',  

(contour intervals= 0.005). Normal direction is stretched by a factor of 10. Flow 
direction is from left to right. Large roughness element instability with tar = 0.1856. 
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Figure 4. Streamwise distributions of (U'~ms)~=: with roughness, wR = 
0.0928 (A), without roughness, wR = 0.0928 (B), with roughness, wR = 0.1856 (C), 
and without roughness, wR = 0.1856 (D). Medium roughness dement  is located at 
z = 63.34 (Ree. = 712.8). 
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TRANSONIC AND SUPERSONIC FLOW CALCULATIONS 
AROUND AIRCRAFTS USING A MULTIDOMAIN EULER CODE. 
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INTRODUCTION 

In this paper we present a 3-D Euler numerical method based on the explicit scheme 
proposed by Ni [1] combined with the implicit stage proposed by Lerat et al. [2]. This 
method has been implemented in a 3-D code with multidomain approach and treatment 
of the boundary conditions based on the characteristic relations. In this paper are given 
the main features of the method, and results are presented for the solution of transonic 
and supersonic flows around a supersonic transport aircraft with a five domain decom- 
position. 

EXPLICIT STAGE 

We briefly recall the discretization that we use [3]. We consider the system of Euler 
equations written in a conservative and compact form : 

~ f  + d i v F  = 0  (1) 
~t 

where f denotes the conservative variables and F the fluxes. We use the following 
one-step explicit Lax-Wendroff scheme to obtain a predicted value at time t n+l for 
each point of the mesh : 

At2 (2) 
fn+l'Eij k = f n i j  k - (At div F n )ijk q- [ T div (A n div F ) ]ijk 

where At denotes the time step and A denotes the jacobian matrix of the fluxes. 
The space-discretization is carried out in two stages, following the idea of Ni [1]. 
i) The first order term div F ,  at a mesh point M, is obtained from an arithmetic mean 
of the values of div F at the cell centers surrounding the point M. Each of these 
values is calculated by a contour integral around the corresponding cell. 
ii) The second order term div (A div F ) is calculated at point M by an approximation 
of a contour integral around the staggered control volume containing the point M, by 
using the "distribution formulas" introduced by Ni [1]. The use of this formulas allows 
to get values at the boundary points without introducing any extrapolation formula. 
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ARTIFICIAL VISCOSITY 

Due to the non dissipative property of the scheme in the sense of Kreiss, a fourth 
order linear dissipation D 4 is added. A second order non linear dissipation D 2 is also 
added in order to capture the flow discontinuities correctly. This treatment is analo- 
gous to that proposed by Jameson et al. [4] with a boundary numerical treatment intro- 
duced by Eriksson [5], and its implementation is done as follows (see [3] for more de- 
tails) : 

At 
f n+l,ED ijk = f n+l,E ijk + ( ~ )ijk [ O 2(e2,f n ) + O 4( ea, f n ) ]ijk (3) 

V being the volume of the staggered cell. The coefficients e 2 and e 4 depend on the lo- 
cal geometry and on a sensor evaluating second differences of the local aerodynamic 
field. Because it is important to detect contact discontinuities, a combination of pres- 
sure and velocity differences is used. 

IMPLICIT STAGE 

The implicit stage [2] preserves the space centered approach, the conservative proper- 
ty, the second order accuracy and the dissipative (or non-dissipative) aspect of the ex- 
plicit stage. This implicit stage consists in solving the following factorised operator, 
with the following alternati~t| direction form (ADI technique) : 

[ 1-'[t=i,j,k ISt ] e i jk  = R * ijk (4) 

where R* and the operator IS l are defined by : 

R * ijk = fn+l,ED ijk - f n  ijk (5) 

~1 At At 2 
IS t = [1 + --~-(--~-)ijkSt ( T -  p (A .n t )  St)] (6) 

The space operator 8 is defined by ~i  (~ = (~i+1/2 - -  (~i-1/2 , and p ( A .  n l ) is the spectral 
radius of the matrix A n.  nl ' nl being the surface vector of the staggered cell in the 1 
direction. 
The parameters 131 are chosen in order to ensure the stability. From a 3-D linear stabil- 
ity analysis of a transport equation (scalar case) and of the Euler system of equations, 
assuming a cartesian and uniform grid, one can determinate their values ensuring the 
unconditionnal stability of the method [6]. 
The new value fn+l,l  is obtained from the implicit stage as follows: 

fn+l' l i j  k = f n i j  k + Rij k (7) 

We use fictitious points to apply the numerical boundary condition (of Neumann type 
or of Dirichlet type) on the residual R in the implicit stage. 
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PHYSICAL BOUNDARY CONDITIONS AND SUBDOMAIN COUPLING 

The subdomain coupling is based on the use of an arithmetic mean between the 
values of each domain (different before the coupling), these values being defined at 
mesh points or being interpolated. It is important to remark that, for subdomains with 
coincident points, by using "distribution formulas" and arithmetic mean treatment at 
matching boundary points, one obtain the same space discretisation for inner and 
matching points. The numerical boundary conditions and the subdomain coupling are 
applied before the implicit stage, to maintain the conservative aspect of the scheme, 
and after the implicit stage. 
The treatment of the boundary conditions is based on the use of the characteristic rela- 
tions as proposed by Viviand et al. [7]. For each point of the mesh, we get the final 
value o f f  at time t n+l by solving the following system of equations : 

B .  [ fn+l i j  k -- f n + l d  ij k ] = 0 (8) 

where B denotes the matrix the column of which are the left eigenvectors of the jaco- 
bian matrix associated with the direction normal to the boundary. Each relation 
corresponding to information coming outside from the computationnal domain is dis- 
carded and replaced by boundary conditions. 

FLOW AROUND A SUPERSONIC TRANSPORT AIRCRAFT 

We present here calculations performed with this method for subsonic, transonic and 
supersonic flows around a supersonic transport aircraft. The computational domain is 
restricted to the half-aircraft configuration and is divided in five sub-domains as shown 
in figures 1 and 2. The five different domains contain respectively (along i,j and k 
directions) 161x10x21 points, 161x9x13 points, 161x64x25 points, 161xllx25 points 
and 161x73x25 points, which makes a total of 648347 points. The mesh on the air- 
craft surface is presented on figure 3. This mesh exhibits two singularities before and 
behind the aircraft body. 
Each calculation is initialised by a uniform flow corresponding to the upstream condi- 
tions. The three calculations have been performed with a CFL number equal to 4, and 
the convergence is reached when three order decrease of the residual (corresponding to 
a stagnation of the different global value levels) is obtained. Figure 4 (resp. figure 5 
and figure 6) present the isobaric lines on the upper aircraft surface for the transonic 
flow (resp. for the supersonic flow and for the subsonic flow). For the subsonic case 
streamlines starting from the leading edge are plotted in figure 7. 
The upstream conditions for the transonic flow are : M** --0.95 and ~ = 4 °. The con- 
vergence is obtained after 2000 iterations. One can observe that the numerical solution 
of the flow, and in particular the shock wave, is not disturbed across the boundaries 
between subdomains. 
The upstream conditions for the supersonic flow are : M~ =2 and a~ = 4 °. The con- 
vergence is obtained after 750 iterations. As expected for this supersonic case, one see 
the trace on the fuselage of the trailing edge upper surface shock. 
The upstream conditions for the subsonic flow are : M.. =0.25 and ~ = 16 °. The 
convergence is obtained after 3000 iterations. This flow is strongly vortical, as it is 
observed from the aspect of the streamlines. One can notice the low pressure region 
on the upper surface of the wing, corresponding to the trace of the vortex. 
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S I M U L A T I O N  O F  2 D  E X T E R N A L  I N C O M P R E S S I B L E  V I S C O U S  
F L O W S  B Y  M E A N S  O F  A D O M A I N  D E C O M P O S I T I O N  M E T H O D  

J . - L .  G u e r m o n d ,  S. H u b e r s o n ,  W . - Z .  S h e n  

LIMSI-CNRS, BP n ° 133, 91403 ORSAY Cedex. 

1. INTRODUCTION - Visualization of incompressible viscous flows shows that vor- 
ticity concentrates in wakes and advection dominates viscous diffusion as the Reynolds 
number increases. These conditions are favourable for simulating such flows by means 
of particle methods. Furthermore since this class of methods is grid-free, it is suit- 
able for tackling problems with moving boundaries. However, particle methods are 
inaccurate as viscous effects are of the same order as that of advection. Hence, in 
boundary layers, methods which are adapted to parabolic problems are needed (eg. 
finite differences, finite elements, etc.). The remarks above led us to develop a domain 
decomposition method that combines advantages of both approaches (cf. [3] [5 9. 

2. FORMULATION OF THE PROBLEM - Consider p moving solids (Si)~=l,...,p in a 
Galilean frame of reference (O, i , j)  of IR 2. Let k = i x j ,  define (O~)~=l,...,p origins of 
reference for each solid, and let vi (resp. f~i) be the velocity of Oi (resp. the angular 
velocity of SI). The solids are immersed in an incompressible Newtonian fluid which 
is at rest at infinity. The fluid domain, denoted by 7:), is decomposed into p + 1 open 
subdomains so that 7:) -- :Do Ui'_-l,...,p :Di, where the subdomains :DI are homeomorphic 
to a ring. It is hereafter assumed that the domain decomposition has been done 
so that convective effects are dominant in :Do. Let Bi (resp. Fi) be the interface 
between :Di and Si (resp. :Do), and ni  be the outward normal to the boundary of 
:Di for i = 0 , . . . , p .  In 7:)o the Navier-Stokes equations are formulated in terms of 
velocity and vorticity (u0,w0) and are approximated by means of a particle method, 
whereas in each subdomain :Di they are formulated in terms of stream function and 
vorticity (¢~, wi) and are approximated by means of finite differences. Let T > 0 and 
N E IN, approximations of (Uo,Wo) and (@,w~) are sought in parallel in the time 
interval (tk,tk+l) where 5t = T/N and tk = kSt for 0 < k < N 

3. SOLUTION IN :Do - Let v~(t) the mean velocity of the p solids. The fluid 
motion is studied in a frame of reference which moves with velocity v~(t). In :Do the 
advection-diffusion equation of w0 is approximated by: 

k+l  k /2~72CO0k+1 , (3.1) OWko+l/Ot + V.(a30 Uo) = 

P 

uko = -voo + ; a~kVG x kdv + ~ ~ [ ( n i x  v~j) x VG + (nj.v~j)VG]dl, (3.2) 
j=l 

G is the Green function of the Laplace operator in IR 2, and v~j = vj + ftj x (y - Oj). 
Wellposedness of the problem requires that some transmission condition through 

r i  is imposed on w~. Such a condition is obtained by taking into account the fact 
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Figure 1: Streaklines about two cylinders, g* = 2.5. 

that in the vicinity of Fi viscous diffusion is dominated by advection. Hence, (3.1) 
can locally be considered as a hyperbolic equation whose right hand side, uV2w0 k+l, 
can be explicited and considered as a source term. For this kind of problem, Dirichlet 
conditions are imposed on the subset of Fi where the flow enters :Do (eg. see [2], [4]): 

j = 1 , . . .  ,p, w0k+l(~) = a~(x), if Uko(~e).no(~) < 0 (3.3) 

Problem (3.1) (3.2) as presented above is approximated be means of a particle method 
that take into account Dirichlet data (3.3) (see [3] for details on this technique). 

4. SOLUTION IN : D i  - For each subdomain :Di, the fluid motion is studied in a 
non-inertial frame of reference that is linked to Si, and the Navier-Stokes equations 
are formulated in terms of stream function of the relative velocity and the vorticity 
of the absolute velocity. Hence, the PDE's to be solved are: 

0w~+l/0t + V.(w~+lV × (¢~+'k)) = u V ~  +1 (4.1) 

V 2 • / k J c l  : 2 ~  i - -  02 k-F1 ( 4 . 2 )  

The system above is complemented by the following boundary conditions on Hi: 

7/)~-I-1 ,,k'}'l ~)~-I-'1 iB OCOk"Pl iB = vB, , 0n - 0, and , ~ d l  = __•ir, ,[k x (y - Oi)].dl (4.3) 

Furthermore, transmission conditions need to be enforced so that continuity of the 
physical variables along with their flux is ensured across Pi. The conditions in question 
depend on the local nature of the PDE's to which ¢i and coi are solutions. Since ~bi is 
solution to an elliptic problem (4.2) whatever the flow nature, a transmission condition 
on ¢i must be enforced everywhere on Fi. Such a condition is provided by a Green 
identity based on (4.2) and (4.3): 

k OG_-O¢~]d l ,  
j = l  

where, = , , j . [ ( =  - O j )  × k] - a j l =  - OjlV2. ( 4 . 5 )  

Note that (4.4) is global, i.e. it transmits the whole spectrum of information to each 
subdomain at once, whereas classical Dirichlet-Neumann coupling conditions (eg. see 
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Figure 2: Streaklines about two cylinders, g* = 1. 

[2] [4]) poorly transmit low frequencies. By using the same arguments as that of §3, 
transmission of information on wl is achieved by: 

co/k+l(x) = wok(a), if u ~ ( = ) . n i ( a )  < O. (4.6) 

As far as information transfert is concerned, this condition is sufficient. Nevertheless, 
since (4.1) is approximated by means of a centered finite differences scheme, a bound- 
ary condition for w~ +1 on Fi is required. Since the flow regime is almost hyperbolic, 
the piece of information that is missing on the subset of r l  where the flow goes out is 
obtained by doing an approximate Lagrangian integration of (4.1): 

0 2 k + l ( ~ g )  : c d k ( =  - -  u / k ( ~ )  -~- Y ( ~ t V 2 c d k ( T  - -  u k ~ t ) ,  i f  u ~ ( = ) . n i ( ~ )  > O. ( 4 . 7 )  

The (~ i ,w i )  problem as formulated above is linearized and solved by means of a 
finite differences method that has been developed in [1]. 

5. NUMERICAL EXAMPLES - The present method has been coded and tested; com- 
parisons with experimental data have shown reasonable agreement (see [3] for details 
on tests). In the three examples shown below we try to emphasize the versatility of 
the present approach and give some flavor of its possibilities. 

The first example concerns the flow about two interacting cylinders. In figures 
1 and 2 are shown the streaklines about two impulsively started cylinders at times 
t = 80 (fig. 1) and t = 70 (fig. 2). The Reynolds number based on the diameter of 
the cylinders is equal to 110. In each case the finite differences domains are composed 
of rings the width of which are set to one cylinder radius• The dimensionless gap g* 
between the cylinders (i.e. gap/diameter) is equal to 2.5 and 1 in case 1 and case 2 
respectively. It is clearly shown here that the stable flow regime consists of two out of 
phase Karman streets. The phase between the two vortex sheddings depends on the 
dimensionless gap g*. A stability analysis of the wake interactions by means of the 
present method is under way. Since the finite differences subdomains are disconnected, 
it is possible, at the same numerical cost, to let the cylinders oscillate. 

In figures 3, 4, and 5 we present numerical simulations of the flow about tandem 
airfoils. The leading airfoil oscillates in pitch and the rear one is fixed. This con- 
figuration may be viewed as a model for the rotor /s ta tor  interaction in turbines and 
rotating machines. The fluid domain is decomposed into three subdomains as shown 
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Figure 3 :  Definition of the finite differences subdomains  for the tandem airfoils. 
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F i g u r e  ~: Streamline patterns about impuls ively  started tandem airfoils. 
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Figure 5: Instantaneous velocity  field about the t a m d e m  airfoil at t ime  t = 10. Not ice  
the large eddies shed by the leading airfoil. 
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Figure 6: Shed particles and streamline patterns about a Darrieus wind turbine at 
t = 2 .  

in figure 3. Each airfoil is embedded in a small finite differences subdomain. Since 
each subdomain moves with the airfoil it embeds, no regridding is required as time 
evolves. 

In figure 4 we present streamline patterns about the impulsively started tandem 
airfoils at times t = 1.5, 2.5, 3.5 and 4.5. Shown here is the interaction between the 
rear airfoil and the starting vortex that has been shed by the leading airfoil. The 
Reynolds number vooC/2u is set to 3000, the reduced frequency of the oscillating 
airfoil fC/2voo is equal to 0.2 and O:max = 45 °. 

In figure 5 is shown the instantaneous velocity field at time t = 10. One may 
verify in figures 4 and 5 that the velocity field is smooth across the interfaces of the 
subdomains. Note that the tandem airfoil problem or other problems of this kind 
would be difficult to treat by means of classical global approaches, since for these 
class of methods the flow domain would have to be either regridded or deformed at 
each time step. 

The third examples concerns the simulation of a Darrieus wind turbine. In figure 6 
is shown shed particles and streamline patterns about a Darrieus-like wind turbine at 
t = 2.2 after an impulsive start. There are four subdomains. The wind turbine rotates 
in the anti-clockwise direction and the fluid moves from right to left with velocity Voo. 
denote by R be the windmill radius, f~R/voo = 2.16 arid voo2r/u = 3000. 
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In t roduc t ion  

In recent years there has been an upsurge of interest in the application of unstruc- 
tured grid methods to the solution of problems involving high speed compressible 
flows. An attractive feature of unstructured grid methods is that they can be easily 
combined with adaptive mesh procedures so that the solution quality may be en- 
hanced in an 'optimal' manner. In this paper an adaptive finite element method for 
the solution of transient compressible flow problems in two dimensions is described. 

Mesh  Genera t ion  and Adap ta t ion  

The computational domain is represented by an unstructured assembly of linear 
triangular elements. The approach advocated for the generation of such a mesh is 
a generalization of the advancing front technique with the distinctive feature that 
elements, i.e. triangles, and points are generated simultaneously 1. This enables 
the generation of elements of variable size and stretching. The mesh adaptation is 
performed automatically during the computation 2'3 and is achieved by local regen- 
eration of the grid, using an error estimation procedure. Error indicators are used 
to mark those regions where a finer/coarser mesh is required and those regions are 
then remeshed, to achieve the desired mesh spacing, using the general triangular 
mesh generator. 

Solut ion Algor i thm and Domain  Decompos i t ion  

The two dimensional equations governing compressible inviscid flow are considered 
in the conservation form for the cases of both plane and axisymmetric formulations. 
A Taylor Galerkin explicit time stepping scheme, which has been described in detail 
previously 4, is employed for the solution algorithm. This is a relatively inefficient 
method for the solution of problems of transient compressible flow on meshes ex- 
hibiting large variations in elements sizes, because of the stability restrictions placed 
on the allowable timestep size. However the effÉciency of the scheme can be improved 
by combining it with a domain decomposition method 3'5. Instead of using a single 
timestep throughout the computational domain, the objective now is to group the 
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elements according to the maximum allowable timestep size and to advance the solu- 
tion independently within each group. Time accuracy of the procedure is maintained 
by appropriate interchange of information across the boundaries of the groups. The 
implementation of the method proceeds algorithmically as follows: 
1. before advancing the solution, compute the maximum eigenvalue $,,~,: of the 
system at each node. 
2. compute the allowable stability timestep At~ = h¢c,/$,,~, for each element where 
cs is the safety factor and h~ is a representative element length. In the present im- 
plementation the element length is taken to be the minimum element height. 
3. determine the minimum timestep At,,in allowed on the mesh and sort the ele- 
ments into m regions according to the ratio A t ~ / A t , , ~  e.g. 

region 
1 
2 
3 

all e lements  e for which 
At,ni. < At~ < 2Atmi.  
2Atmi. _< At~ < 4Atmi,~ 
4At.,i~ < At~ < 8At.~,= 

4. for each region, m, find the boundary nodes of the region. Overlap the regions 
by adding two layers of elements to each region m from the regions p > m. 
5. advance the solution one global timestep. 
The number of regions allowed should not exceed some specified maximum. How- 
ever, this will not necessarily be the optimum number of regions. The domain 
decomposition technique cau be expected to prove most useful when used in con- 
junction with adaptive refinement techniques, where large variations iX the element 
sizes over the computational domain will certainly be encountered. 

Numer ica l  Examples  

The performance which lnay be achieved by the adaptive remeshing approach for 
transient flows is illustrated by considering three numerical examples. 

The first consists of a NACA 0012 airfoil pitching harmonically about the quarter 
chord at a reduced fl'equency based on selnichord of k = 0.0814. The free stream 
Mach number is J14oo = 0.599 and the angle of attack is a0 = 4.86 °. The calculations 
were performed for three cycles of motion to obtain a periodic solution. Results were 
obtained for the airfoil pitching with an amplitude of al = 2.44 °. The calculated 
results, shown in Figure 1, compare favourably with the experimental data 6 

The second example consists of an axisylnmetric simulation of the blast wave 
produced by an exploding vessel. A sketch of the experimental apparatus for this 
problem is shown in Figure 2. The problem involves the simulation of the flow field 
around a vessel whose lid is initially at rest but which then moves upwards under the 
influence of the initial high pressure region inside the vessel. Initially the air inside 
the vessel was at a pressure of 40 times atmospheric, while the air in the chamber 
was at atmospheric pressure. The results of the calculation are displayed in Figure 
2. During the initial phase of the transient the predictions are seen to be in good 
agreement with the experiment r, but the magnitude of the peak at two transducers 
is underpredicted by the numericM method. 

The final problem considers the rupture of a circular pipe which is passed through 
a concentric cylindrical chamber. A sketch of the experimental apparatus for this 
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problem is shown in Figure 3. Initially the air inside the pipe is at a density of 
110 kg/m 3 (based on a pressure of 1420 psi). At this pressure the pipe fails and 
the two halves of the pipe then move apart. The variation of the velocity of each 
pipe half was computed using the difference in pressure between the pipe and the 
external chamber. The computed pressures, shown in Figure 3, compare favourably 
with~experiment s. 

a ( r )  = 6.97% k r  = 60 ° 

~(r) = ~.11 °, &r = 1 7 4  ° 

o(r) = 3.49°, k r  = 214 ° 

a ( r )  = 2.43 °, k r  = 265 ° 

I 

N 

a ( r )  = 5 . 1 1  ° ,  k r  = 1 7 4  ° 

~ t,toa,t~ 

a(r)=6.97 °, kr=60 ° 

a ( r )  = 3 . 4 9 %  k r  = 2 1 4  ° a ( r )  = 2 . 4 3  ° ,  k r  = 2 6 5  ° 

Figure  1 
NACA 0012 airfoil pitching harmonically at Moo = 0.599, c~0 = 4.86 °, 

al = 2.44 °, and k=0.0814. Meshes and corresponding density contours. 
Comparison of computed surface pressure coefficient with experiment. 
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A N U M E R I C A L  P R O C E D U R E  T O  SOLVE V I S C O U S  F L O W  

A R O U N D  A R B I T R A R I L Y  M O V I N G  B O D I E S  

W.Jia an d  Y . N a k a m u r a  

Dept. of Aeronautical Engineering, Nagoya University, Nagoya, 464-01, Japan 

1. I N T R O D U C T I O N  

A numerical treatment of the flow around arbitrarily moving bodies is of great 
importance. As long as a single body is considered, we can adopt a moving grid with 
the body. However, this approach can hardly be applied to the general case where 
several bodies move arbitrarily. This paper presents a numerical procedure to solve 
the general case by introducing an unsteady multi-domain technique. 

2. G O V E R N I N G  E Q U A T I O N S  A N D  C O O R D I N A T E S  

The incompressible N-S equations are treated by use of three kinds of coordinates, 
i.e., (xi, t): the static Cartesian coordinates; (~i, 7): the generalized coordinates mov- 
ing with the body surface; (~{, r): the Cartesian coordinates moving with the body 
as long as a rigid body motion is considered. The relationship between the three 
coordinates is represented as 

( ~ ,  t )  ~ ( ~ ,  7)  ~ (~i, 7)  (1) 

= 7 , ~ = x~ (~, ~-) , ~ = fi ( ~ )  (2)  

The N-S equations are written in the unsteady generalized coordinate as follows: 

O-~i( J-'Ui) = 0 (3) 

0 (j_luk)._j_ 0 [ ( d9~i "~] ] 0 (j_lgljOUk" ~ (4) 
0-7 ~ J- '  u, ~ + ~ p )  - R~ O~, k O~j ] 

u~ = ~ + ,.,j o~j  o(x , ,  ~ )  ' g~j - ox,~ ox,~ (5) 

and for a rigid body motion: 

(6) 

where uk is the velocity component in the static Cartesian coordinates and Ui the 
contravariant velocity component in the unsteady generalized coordinates. J is the 
Jacobian and gij are the transformation metric tensor. 

The Boundary Conditions (BC) on the body surface are given as follows: 

ul -=ui(~), Ui -- 0 (7) 

O__pp = (~( J-'u).~ - ~x(j-lv)r 
O77 

where ~:, ~7 denote the tangential and normal directions to the surface. 

(s) 
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3. N U M E R I C A L  S C H E M E  

The governing equations are spatially discretized by the finite volume method in 
the unsteady generalized coordinates, where the convective terms are approximated 
by the Generalized QUICK method[l], [2] and the others by the second order ap- 
proximation. The time integration is performed by a two step method[3], where the 
Adams-Bashforth method is applied to the convective terms and the Crank-Nicolson 
method to the viscous terms. The pressure Poisson equation with Neumann BC is 
solved between the two sub-steps at every time step. To obtain a fully converged so- 
lution for this problem, a new method is applied[3]. Let the original Poisson equation 
with Neumann BC be 

V 2 p = D  , 0 ~ n B c = S  (9) 

which is divided into a Poisson equation with Dirichlet BC and a Laplace equation 
with Neumann BC. 

V2pI=D , P l [ B c = O  (10) 

V2p2 = 0 @2  = S - @1  (11) 
' On BC On Be 

P = Pl + P~ (12) 

These equations are solved through three steps. The first step solves the Poisson 
equation under Dirichlet BC by the checkerboard SOR method. The second step 
calculates the boundary values of the Laplace equation with Neumann BC by the 
boundary element method. The third step solves the Laplace equation with known 
boundary values again by the checkerboard SOR method. This method produces a 
fully converged solution with a fairly rapid convergence rate than the SOR method 
applied to the original Poisson equation with Neumann BC. 

4. M U L T I - D O M A I N  T E C H N I Q U E  

The static main grid is employed to cover the whole computational region, where the 
sub-grid system is attached to each moving body. The sub-grids overlap the main-grid 
and, possibly, each other. The governing equations are separately solved on each grid. 
To make the procedure global, a mask function 5 is introduced instead of dividing the 
main grid into several sub-regions. 

= (1 - 5)u + 6Urep|~ce 5 = { 0 no replacement (13) Unew ' 1 replaced 

The computation is therefore performed for all interior grid points including the 
connecting boundary. 

The data transfer between each grid is performed by interpolating values at the 
boundaries (Fig. 1) at every time step. To make the interpolation robust and insen- 
sitive to the mesh quality, the triangular linear function is employed. 

u = ¢1ul + ¢2u~ + ¢3u3 (14) 

where ¢1, ¢2, ¢3 are the aera coordinates of the point • in the triangle 1-2-3. 
The three vertices of a triangle are automatically searched so as to satisfy the 

following condition: 
I¢11 + I¢ 1 + 1¢31 --  1 (15) 
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To save the CPU time, the searching area is localized, where use is made of the 
information on the locations of interpolated points in the previous time step. 

4. R E S U L T S  

The procedure is fully vectorized. First, it is applied to solve the flow around an 
oscillating cylinder at Re  = 314, the center of which moves as x0 = -0 .5  cos 2~rt, yo = 
0. For this case, there exists a pressure distribution even at initial due to body 
acceleration (Fig.2). Figure 3 shows velocity vectors during one cycle. A comparison of 
pressure contours between multi-domain and single-domain solutions is made in Fig.4 
which verifies the accuracy. Figure 5 shows another application to the flow around two 
closely separated cylinders oscillating in the opposite directions as Xl = -0 .5  cos 2 4 ,  
Yl = -0 .8 ,  and x2 = 0.5cos2~d, y~ = 0.8 at R e  = 314. This case is an example of 
complicated overlapping. Good agreement of physical quantities is obtained for each 
grid in the overlapped region. The time variations of aerodynamic coefficients are 
plotted in Fig.6 and compared with the potential flow solution. For one cylinder case, 
the results of multi-domain and single-domain solutions fall on the same line. It is 
seen that the phase of the viscous flow solution is slightly delayed and the amplitude 
is greater than the potential flow solution. Finally, an application to a three body 
problem ( R e  = 1000) is shown in Fig.7, which proves the versatility of the procedure. 

5. C O N C L U D I N G  R E M A R K S  

A general procedure of treating incompressible viscous flow around several bod- 
ies with each arbitrary motion is developed and verified by complicated overlapping 
problems. 
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Fig .  3 Velocity vectors around an oscillating cylindei at R e  = 314 
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Fig .  4 Pressure contours around an oscillating cylinder at R e  = 314 and m t =  ~r 
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Fig.  5 Computational results of two closely separated cylinders oscillating in the opposite 
directions at Re -- 314 and wt = 7r/2 (a) Velocity vectors ~tnd (b) pressure contours 
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Fig. 6 Time variations of aerodynamic coefficients 
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Fig. 7 Computational results of three-body problem at Re = 1000. The cylinder in the 
center is at rest, around which the two cylinders move co-axially in the opposite 
directions. (a) Computational grids, (b) and (c) velocity vectors at two instants, 
(d) pressure contours after one cycle. 
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Mul t i - b lock  Techniques  for S t r u c t u r e d  and  U n s t r u c t u r e d  G r i d s  

Most computers today are based on several processors and therefore the develop- 
ment of techniques to parallelize codes has become important. A tool widely used for 
parallelizing a CFD program is to split the computational domain into sub-domains 
(or blocks), for which the flow equations are solved independently and in parallel. 
Commonly, the multi-block technique is employed on structured grids resulting in a 
regular data set in each block. However, if the data structure is altered by facilities 
such as local mesh refinement the number of nodes per block can differ quite sub- 
stantially resulting in a bad load balancing on parallel machines. In our approach to 
local grid refinement an unstructured data environment is introduced which permits 
the creation of blocks, not necessarily related to the original ones. These domains 
can be obtained by applying a splitting technique which decomposes an unstructured 
mesh into a number of blocks equal to the number of processors available. The use 
of the unstructured data system results in a decrease of computing speed due to the 
indirect addressing. However, the parallelization technique is one way to overcome 
this problem. 

In this work the implementation of an unstructured three-dimensional flow solver on 
a parallel local memory MIMD computer is presented. As a target machine the Intel 
iPSC/2 Hyper Cube has been chosen. 

N u m e r i c a l  D i sc re t i za t ion  of the  3-D Eu le r  E q u a t i o n s  

For the discretization of the 3-D Euler equations, that write in integral form as 

fffo  7 W dV = - [ [  T .  dS 
d J 

v o v  

with W = (p, pu, pv, pw, pE) T, we choose a cell-vertex finite volume approach. The 
primitive variables are associated with the mesh nodes and the mean flux across a 
face is obtained by first calculating the fluxes functions at the four vertices and then 
averaging these quantities. Summing up in a first step the fluxes across the six cell 
faces yields the mean value of the rate of change at the cell center. The second step 
is to relate this value to the cell vertex. For this the flux-residual 7~k of the eight cells 
that surround node i are averaged as suggested in [1]. 

Since central difference schemes suffer from an inherent dispersive behavior and in 
order to rule out non-physical solutions, a supplementary, so-called artificial dissipa- 
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tion, term must be added to the convective terms. The well-known model consisting 
of blended second and fourth differences is modified into an unstructured formulation 
and total smoothing in operator notation takes the form: D~(W) = D! 2) - D~ 4), with 
the undivided Laplacian D (2) and the bi-harmonic operator D (4). The unstructured 
formulation is well-suited for the application to hanging nodes at the interface be- 
tween coarse and fine cells. In the absence of (at least) one neighbor the summation 
is done over a number of differences with the surrounding points (less than six). 

The inviscid boundary condition of zero flux transport through solid walls is imposed 
by first setting the normal flux components to zero and secondly by forcing velocity 
to be tangential to the wall. At the far field the method of Riemann invariants serves 
to ensure non-reflecting boundary conditions. Periodicity across the interior block 
boundaries is obtained by means of auxiliary cells. A second layer of dummy cells 
becomes necessary to accommodate the treatment of the smoothing terms. 

To advance solution in time an explicit Runge-Kutta three-stage scheme is employed 
in connection with the local time stepping convergence acceleration technique. 

The Adapt ive  Local Grid Ref inement  Me thod  

The solution quality of flow calculations is strongly related to the number of mesh 
points of which an increase means an increased resolution of flow features; a benefit, 
however, which is achieved at the expense of higher computational costs. In general 
dominating salient flow features like shocks or vortices cover only a relatively small 
part of a typical flow field, whereas large regions are of low activity. 

The method of local grid refinement is one of the basic ways to improve flow resolution 
locally. The underlying idea is to fix the global grid and to add nodes exclusively to 
domains of physical interest. Local grid refinement is of particular importance for 
three-dimensional problems for which limiting the number of grid points is crucial [2]. 

Our approach to local refinement is to apply an unstructured data system to regular 
grids of hexahedra cells. With this technique the rigidity of the ordered (i, j, k)-indices 
is broken and replaced by a set of pointers. The method provides a fair amount of 
flexibility in refining the grid on several levels and permits the solution adaptive refine- 
ment of arbitrarily shaped regions. It is exactly the unstructured environment that, 
in combination with the local grid refinement method, gave motivation to implement 
the code on a local memory computer. Here we restrict ourselves to a brief survey of 
the method used, for a detailed description we refer to [3]. 

The refined zones are obtained by a simple sub-division of each coarse grid cell into 
eight smaller hexahedra. Each cell is divided independently from its neighbors. The 
topological similarity of coarse and fine cells permits the application of the flow al- 
gorithm to the entire flow field except to nodes at the refinement interfaces. For the 
update of these so-called hanging points we modify the residual distribution coeffi- 
cients. The inviscid terms are evaluated by performing a special line integration at 
interface cells which includes the hanging nodes. 

Since the precise location of flow features is unknown at the time of mesh generation, 
the concept of flow adaption is indispensable. Feedback about the solution during 
calculation is obtained in the form of some error indicator. Typically, the error is 
great in regions of large gradients in the flowfield which lead to the exploitation of 
flow quantity gradients to drive adaption. 
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The Uns t ruc tu red  Domain  Spli t t ing 

A structured single block mesh can easily be split into a set of equal sized sub-blocks, 
which provides a good load balancing on a multi-processor computer. However, if 
facilities such as local mesh refinement are applied the number of nodes per block can 
differ quite substantially resulting in a bad load balancing. It hence is preferable to 
use an unstructured blocking of the computational domain. The recent development 
of unstructured flow algorithms together with the introduction of massively parallel 
computers has lead to an increasing investigation of such partitioning techniques. We 
will here mention four different algorithms: 

• recursive coordinate bisection (RCB) • recursive spectral bisection (RSB) 
• recursive graph bisection (RGB) • methods of wave front type 

The first three approaches have been investigated in [4]. The last (more heuristic) 
method has recently been applied to the 2-D Euler equations discretized on an unstruc- 
tured grid [5]. In the present work the program of [6], which uses the RSB algorithm, 
has been employed to spli{ a 3-D mesh of hexahedral elements. The domain is decom- 
posed by using a specific eigenvector of the Laplacian matrix L(G) associated with 
the grid graph. If the graph G is connected then A2, the second largest eigenvalue, is 
negative and its magnitude is a measure of the connectivity of the graph. Associating 
the components of the corresponding eigenvector ~2 with the grid points we obtain a 
weighting of the vertices. Sorting these weights in increasing order and decomposing 
them into two halves provides a partitioning of the domain into two sub-domains, a 
procedure that can be repeated recursively. The most demanding part of the RSB 
algorithm is the computation of the ~2. This is done using a special version of the 
Lanczos algorithm. The domains created by RSB are often well-balanced and compact 
which is not the case for the alternative algorithms mentioned above [4]. 

Imp lemen ta t ion  on the  iPSC/2  Hype r  Cube 

The unstructured multiblock approach yields automatically an algorithm which is 
well-suited for parallelization on local memory MIMD computers. We have imple- 
mented the flow solver on an iPSC/2 Hyper Cube with 32 nodes. Each block is 
mapped on a node processor doing the local computations independently. After every 
time step, exchange of information between the blocks is done by means of message 
passing between the processors. Tasks such as loading the node programs and checking 
of the convergence criteria are handled by the host processor. 

Results  

The test configuration chosen for the implementation of the 3-D Euler solver on the 
Hyper Cube is the transonic flow past an isolated delta wing at moderate incidence. 
Local grid refinement is used to improve the resolution of the leading edge vortices. 
This case has been used throughout for all the Hyper Cube performance tests. It 
is pointed out that the memory limit (4 Mbyte per processor) represents a severe 
restriction on the ability to run realistic 3-D tests. A considerable amount of work 
has been spent on code modifications to enable the use of grids as large as possible. 

The first test in Fig.1 shows the timing obtained from a splitting of a global grid with 
41 × 13 × 15 points into maximal 32 blocks. As can been seen from the performance 
graph a speed-up is obtained that is at first linear, but is then followed by a flattening 
of the curve. The reason for this behavior is that the internal communication overhead 
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becomes more significant as the number of blocks increases. 

In a further test, which is more important for practical applications, the result of 
scaling the problem is studied (Fig.2). The number of grid points per processor is 
kept constant (17 x 7 x 11), which corresponds to the largest possible mesh fitting 
onto one processor. A nearly linear speed-up was obtained for each doubling of the 
number of processors and hence refining the global grid. 

Next, the load balancing of block based local grid refinement, the main issue of this 
work, has been studied. As expected, maintaining the original blocks results in a bad 
load balancing. It can be seen that those blocks containing refined domains spend 
nearly 90% of their execution time on computations (Fig.3), while the non-refined 
blocks use more than half of the run time on communication and idle time (Fig.4). 

A remedy to this problem is the automatic domain splitting approach described above. 
Before the application to a grid refinement case we tested the RSB-algorithm on a 
non-refined grid. A total of 13530 points is partitioned into 32 sub-domains of either 
422 or 423 points. The well-balanced distribution of nodes on the processors can be 
seen in Fig.5 and 6. Finally, a locally refined grid with a total of 16709 points (3179 
additional nodes embedded into the 33 x 10 x 41 global grid) is partitioned into 32 
blocks of either 522 (27 blocks) or 523 (5 blocks) nodes each. Note again the small 
deviation of only one grid point. The corresponding timing charts in Fig.7 and 8 
confirm the good balancing achieved. All processors spend similar amounts of time 
on the flow calculations and on message passing which limits the idle time. 
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A S E C O N D - O R D E R  T V D  M E T H O D  FOR THE SOLUTION OF THE 3D E U L E R  AND 
N A V I E R - S T O K E S  EQUATIONS ON ADAPTIVELY R E F I N E D  M E S H E S  

M. J. Aftosmis 
U.S. Air Force Wright Laboratory, Wright-Patterson Air Force Base, OH 45433-6553 

1. OVERVIEW 
The accurate simulation of flows with features spanning many length scales presents a major challenge 

to Computational Fluid Dynamics. This issue becomes especially critical in 3D flows over complex config- 
urations, or even flows over simple configurations at extreme flow conditions, where multiple interacting 
3D features must be correctly represented. The last decade has seen the emergence of two basic approaches 
to this fundamental difficulty. High resolution upwind schemes attempt to represent shocks and contact 
discontinuities with as few cells as possible, while unstructured, adaptive meshes automatically refine the 
local mesh dimension in an attempt to resolve the scale of the local flow physics. 

The present work combines these two techniques by developing an adaptive, high resolution, upwind 
algorithm for the simulation of inviscid and viscous flows. This work extends the two dimensional invisdd 
procedure of Rcf. [1] to the simulation of the three dimensional Navier-Stokes equations. The method is 
node based and written within a finite volume framework which uses hexahedral cells to discretize the sec- 
ond order Upwind TVD algorithm of Hartcn and Ye¢2. An tmstructured implementation of this operator 
permits grid adaptation by division of mesh cells in one or more directions. The viscous terms in the 
Navier-Stokes equations are modeled with central differencing using a newly formulated unstructured dis- 
crctization based upon the 2D work of Kallindeds and Baron3. 

Preliminary results are presented for a variety of test cases. These examples focus primarily on topo- 
logically simple problems intended to investigate the accuracy of the inviscid modeling, viscous modeling, 
and the ability of the adaptation method to find, resolve and faithfully represent features in complex 3D 
flows with multiple interacting inviscid and viscous structures. A built-in central difference option offers the 
ability to compare upwind and central difference results on identical adapted meshes. 

2. NUMERICAL METHOD 
The numerical method relies upon Harten and Yee's Upwind TVD algorithm to integrate the inviscid 

fluxes while the viscous terms use central difference modeling. This spatial discretization is advanced in 
time through a modified Runge-Kutta procedure, and both the inviscid and viscous integration proceeds on 
a mesh of auxiliary cells formed by connecting the ccntroids of the physical mesh cells. Figure 1 shows the 
construction of these auxiliary cells in a 3D mesh. The state vector of conserved quantities is stored at 
nodal locations. 
2.1 ]NVISCID DISCRETIZATION 

The upwind discretization uses a Roe type approximate Relmann solver and the flux function is based 
upon the "modified flux" approach of Harten2. Like many upwind methods, the flux function takes a 
(Central difference + Dissipation) form where the "dissipative flux" modifies the central flux in accordance 
with local wave propagation to recover an upwind stencil at each node. This dissipative flux also contains a 
flux function which includes the limiter and has the additional role of bringing the entire discretization to 
second order accuracy away from local ¢xtrcma. The method is applied in multi-dimensions by essentially 
a superposition of the 1D upwind operators in each spatial direction. 

The fact that the method relies on a superposition of 1D operators and uses this (Central + Dissipation) 
form suggests a natural formulation on unstructured hexahcdral control volumes. This choice is supported 
by the 2D inviscid results contained in Ref. [1]. Here the unstructured algorithm entirely reproduced the 
shock capturing and slip surface representation of the structured formulation by Kroll and Rossow4. 

The upwind operator for the inviscid flux terms requires five points in each spatial direction and it re- 
quires special attention in the current unstructured environment. Ref. [ 1 ] details the construction of the full 
operator by a sequence of nearest neighbor operations. 
2.2 VISCOUS DISCRETIZATION 

The Euler schemel was extended to the full Navier-Stokes system by a separate discretizaton of the vis- 
cous components of the flux density tensor. The total update to the state vector at any node, AUi, then 
becomes the summation of inviscid and viscous contributions. 

AUi -~ ( /~ U i)lnviscid + ( A U i)vi . . . .  { 1 } 
The viscous discretization uses central difference modeling based upon the 2D ideas of Kallinderis and 

Baron3 and the 3D work of Radespiel et al.5. Most importantly, the use of central differencing for these 
terms allows the scheme to be written extremely compactly using only node-to-cell and cell-to-node 
conununication. 
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Figure 1. Consauction of auxiliary and secondary cells for inviseid and viscous discretization. 

This diseretization may be illustrated by considering the formation of the model second derivative term 
uxx at node i. Assuming the control volume Vi (pictured in left of Figure 1) has planar faces and applying 
the Gauss Divergence Theorem over the surface of this volume, o-rv'i, gives 

1 d~Vi 

The x-component of the unit normal vector, nx, and the surface vector, S = (Sx,S~,,Sz) T, are both 
taken oriented in positive coordinate directions. With the auxiliary ceils constructed as fieseribed above, 
each edge incident upon node i will always pierce the face of an auxiliary cell. Thus, Eq. {2} contains one 
contribution from each edge incident upon node i. This observation becomes increasingly important when 
integrating more general control volumes. 

Equation {2} makes use of the first derivatives, ux, at theN, S, E, W, F, B faces. A second surface 
integral, similar to Eq. {2}, provides the derivatives at the centers of these faces through the construction of 
a set of secondary control volumes surrounding each of the edges incident on node i. Figure 1 (righ0 il- 
lustrates this secondary cell construction around the E face of auxiliary cell i. 

(ux)E = V1E--~ un, dS=vI~[ujS'~-uiSI+u,,~S~'-u,S:~e+u.f,S:~'-ubeS~"] {3} 

VE is the volume of the secondary cell, and the surface vectors on the faces of this control volume are 
constructed by averaging those from the faces of the auxiliary cells surrounding nodes i andj  (the nodes 
which define the end points of the edge that pierces the E face of Vi). Similar constructions around the rest 
of the edges which meet at i form the remaining first derivatives needed to evaluate Eq.{ 2}. Chosing these 
secondary control volumes leads to a discretization which is conservative, damps odd-even mode 
oscillations, is free stream preserving on arbitrary meshes, and second-order accurate on any smooth mesh. 

The location of the first derivatives along the edges of the physical cells and the viscous update at the 
nodes of physical cells permits both of the surface integrals (Eqs. {2 } and { 3 } ) to be evaluated by a single 
sweep through the physical mesh cells. This implementation is an extension of that described in Ref. [6] 
and relies on the fact that under the assumptions of a Newtonian fluid with the Stokes hypothesis, the 
viscous fluxes become a simple linear combination of first derivative quantities. 
2.3 ADAPTATION 

Grid adaptation occurs through directional division of the cells in the physical mesh. A feature detection 
algorithm marks cells for division after the solution has progressed sufficiently on a given mesh. Ref. [1] 
contains details of this detection routine in two dimensions. After first examining the domain with an un- 
divided second difference of pressure to find "shock" cells, this routine re-scans only the remaining cells in 
the computation to locate "smooth" features. This second scan relies upon an undivided second difference 
of velocity magnitude to locate regions of rapidly changing shear stress and an undivided first difference of 
density to locate inviseid features in the flow. The cells tagged in the second scan are evaluated on a statis- 
tical basis as outlined in Ref. [6]. The division routine operates recursively in a direction-by-direction 
manner and can divide the cells directionally when features are almost mesh aligned. Directional division is 
usually only applied at the finest level of adaptation6.1. After the cell division process is complete, the en- 
tire mesh is smoothed by a sequential application of Laplacian and curl operators to distribute any stretching 
and skewing error throughout the mesh. This final step is important since the adaptation process reduces 
the truncation error in the solution only if the mesh remains smooth as it is refined. 
2.4 INTERFACES 

An essential complication of hexahedrai cell division is the appearance of interfaces between different 
levels of physical cells. Both the inviscid and viscous discretizations treat interfaces conservatively, which 
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leads to a first order stretching error in the solution perpendicular to interface boundariest. The inviscid 
discretization integrates these nodes directly, while the viscous part uses a specially constructed routine to 
conservatively integrate nodes along the interface. Numerical experiments in both two and three dimensions 
have demonstrated that the inviscid treatment is both smooth and robus0. 

3. PRELIMINARY NUMERICAL RESULTS 
The first test case is designed to establish the accuracy of the inviscid Upwind TVD discretization. 

Figure 2 provides an.overview of this test case. It is a topologically simple example in which an inviscid 
3D double wedge comer flow is simulated at M0,=2.98 with wedge angles ~1=a2=9.49 °. The final mesh 
contained -70,000 nodes which is about 14 times fewer than the roughly 980,000 which would be required 
to provide the same shock resolution on a globally refined mesh. Directional cell division was permitted at 
the finest mesh level and the mesh plane inset in Fig. 2c shows that the cells have adapted themselves to 
match the orientation of wedge and comer shocks. Examining the flow structure in a cross-flow plane at 
x=0.8 permits a direct comparison of Mach contours with both experiment and other previous numerical 
computationsT. Additionally, the undisturbed wedge flow away from of the comer interaction allows a di- 
rect comparison with inviscid gasdynamic theory. The agreement with experiment, theory and the previous 
numerical simulation is very good, and the shock spans no more than two cells. 

A subsonic flat plate boundary layer provides an initial assessment of the behavior of the viscous dis- 
cretization. This quasi-2D flow was computed at two levels of resolution using both TVD and central dif- 
ference operators for M**--~.5 and ReL=5,000. This simulation used an entropy cut-off in the TVD scheme 
of 0.1 and a fourth difference dissipation coefficient of 1/128 in the central difference calculation. The do- 
main extended 2L upstream, along, and above the plate. Figure 3a displays u-velocity profiles of both 
schemes with five and 13 points in the boundary layer. With only five points in the boundary layer, the 
Upwind TVD method has already essentially reproduced the Blasius profile. This result contrasts sharply 
with that from the central difference scheme at this level of resolution. With 13 points in the boundary 
layer, the two integrations produce essentially identical results. At this higher level of resolution, the central 
difference result produces almost no evidence of the "viscous overshoot" evident in the five point case. 

Figure 3b shows skin friction development along the flat plate. This plot reports results for both the 
central and TVD discretizations at two levels of resolution and compares these with the Blasius relation 
Cj=O 664(Rex)-lr2 With 13 points in the boundary layer (ReL of 5 000), the theoretical skin friction is 
predicted well by about Rex = 100, or 2% of the plate length from the leading edge. 

The final example examines the performance of the detection algorithm in resolving multiple interacting 
features in 3D viscous flow. The test case presented in Figure 6 considers Mach 1.2 flow over the 65 ° 
cropped delta wing tested in Ref. [8] at 20 ° incidence angle. The laminar, half-span calculation used a 
Reynolds number of 480,000 based on the root chord, while the experiment was conducted at Rec=2.4- 
5.3x106. The wing in the calculation was not truncated at the trailing edge, but instead, was extended 
downstream to the outflow boundary (located at approx, x=-l.lc). 

This flow is characterized by a strong steady primary vortex which separates at the sharp leading edge. 
Underneath this vortex, a cross-flow shock develops which induces separation of the boundary layer, and 
"locates" the secondary separation. The tertiary separation lies between the the cross-flow shock and sharp 
leading edge. On the windward side, a bow shock develops to turn the flow around the wing. The 
combination of interacting viscous and inviscid features makes this a discriminating problem for evaluating 
the capabilities of the feature detection algorithm for realistic, complex 3D flows. 

Figure 4a contains an overall view of the computation The wing is depicted with the mesh on the 
starboard, and density contours on the port side of die delta wing• These contours show the footprints of 
the primary vortex, cross-flow shock, secondary and tertiary vortices on the wing surface• The final 
adapted mesh used 999,000 nodes, placing about 260 points chordwise and 150 points spanwise (at the 
t.e.) on the upper surface of the wing. Figure 4b shows further details of the flow as it passes through the 
plane located at the trailing edge through contours of total pressure loss. The figure clearly shows the 
adaptation pattern responding to capture the shock triggered separation underneath the primary vortex, as 
well as resolution of the feeding sheet and the entrained tip vortex• This indicates that the feature detector 
successfully located these weaker features, while still responding to the strong vortical structures and bow 
shock. Figure 4c contains symmetry plane Mach contours, and a view of the corresponding adapted grid 
while Figures 4d and 4e compare this calculation with wind tunnel results from Ref. [8]• The computed 
surface streamlines reproduce the overall surface surface shear pattern from the experimental oil flow 
visualization including formation of the secondary and tertiary separations. The tertiary vortex in the 
calculadon does not appear to form quite as early or as fully as in the experiment and this is believed to be a 
Reynolds number effect• Figure 4e is a direct comparison of the Cp distribution at x=0.8c. Starting at the 
symmetry plane, the line plot agrees with the data underneath the primary vortex, through the cross-flow 
shock and secondary separation point, and begins to differ only in the location of the tertiary separation. 
Despite the Reynolds number difference, this comparison is quite reasonable. Nevertheless, it should be 
re-emphasized that this example focuses on the performance of the detection algorithm and was not 
conducted as a rigorous attempt to reproduce wind tunnel data. 
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Fig. 4b Total pressure loss contours at t.e. 
(~-1.0) showing shock induced separation. 

l Fig. 4c Mesh and Mach contours in symmetry plane. 

Fig. 4d Right: Results from experimental oil flow Fig. 4e Comparison of Cp at x=0.8 with 
visualization [8] (Recffi2.4-5.3x106). Left: Computed cxpurimental results flora RuL [8]. 
surface streamlines from numerical solution (Rec=4.8xl05). 
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§ I n t r o d u c t i o n  

An upwind finite-volume discretization of the Euler equations in integral 
form on arbitrary unstructured grids is developed. The present scheme uses 
a variant of Godunov's method [1] applied to irregularly shaped control vol- 
umes. The method is extended to high order accuracy using the MUSCL 
procedure due to van Leer [2,3] and its logical extension to unstructured 
grids [4]. Recall that  in Godunov's method the integral cell averages are the 
basic unknowns (degrees of freedom) in the scheme. The task at hand is to 
evaluate the flux integral given these cell averages of the solution. The basic 
solution process is summarized in the following steps: 

R e c o n s t r u c t i o n .  Given integral averages of the solution in each control 
volume, reconstruct a piecewise polynomial which approximates the behavior 
of the solution in each control volume. 

F l u x  Q u a d r a t u r e .  From the piecewise polynomial description of the solu- 
tion, approximate the flux integral by an upwind flux function and numerical 
quadrature. 

E v o l u t i o n .  Given a discretization of the flux integral, evolve the system in 
time using any class of implicit or explicit schemes. (In the present calcu- 
lations, a four stage Runge-Kutta  time stepping scheme is used with space 
varying time step.) This results in new integrM cell averages of the solution. 
The solution process can then be repeated. 

Reconstruction 

Perhaps the most challenging task is the reconstruction of piecewise poly- 
nomials given cell averaged solution data. The situation is depicted in one 
space dimension in figures la-d. 
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(a) (b)  (c) (d)  
F i g u r e  1. (a) Cell-averaging of quartic polynomial ,  (b) pieeewise linear re- 
construct ion,  (c) piecewise linear reconstruct ion with monotonie i ty  enforce- 
ment ,  (d) piecewise quadrat ic  reconstruction.  

Figure lb  shows the  linear reconstruct ion of a quartic polynomial  given inte- 
gral cell averages. To prevent  spurious oscillations from occurring in numer-  
ical solutions near discontinuities and steep gradients,  monotonic i ty  of the 
reconst ructed da ta  is enforced (see figure lc). The  m e t h o d  can be extended 
to high order accuracy by encreasing the order of the reconstructed piece- 
wise polynomials  as shown in figure ld.  These concepts extend natural ly to 
uns t ruc tu red  grids. 

The  process of solution reconstruct ion from integral cell averages is greatly 
simplified by exploiting the following (well-known) observation: in the case 
of piecewise linear reconstruction, we can dispense with the notion of ceil 
averages as unknowns by reinterpreting the unknowns as pointwise values of 
the solution sampled at the centroid of the control volume. This simplifies the 
task of reconstruct ion considerably. 

4 

X 3 
Mesh 

l 5't Median Dual 
2' Centroid Dual 

f 
6 ~ 

a e, ttb $~=_ b 

/ ~ ~ p o i n t  of segment a-c 
," ~ b' - Cen~roid of triangle a-b-c 
'/" c' - Centroid of tetratiedron a-b-c-d 

d' - Centroid of triangle a-c-d 

F i g u r e  2. (a) 2-D t r iangulat ion with median  dual, (b) por t ion of 3-D median  
dual for te t rahedrM mesh. 

In the  present formulat ion,  control volumes are formed from a median  dual 
tessellation of the  mesh tr iangulat ion.  The  median  dual tessellation is illus- 
t ra ted  in figures 2a-b for two and three space dimensions. For s teady-state  
computa t ions  on dual control volumes, another  impor tan t  observation is tha t  
pointwise values of the solution can be placed at vertices of the  mesh (which 
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need not  be exact centroids of the median  dual control volumes) wi thout  ap- 
parent  loss of accuracy. This further  simplifies the reconstruct ion procedure.  

Flux Quadra ture  

Since the reconstructed da ta  varies discontinuously across control volume 
boundaries,  the  t rue  flux is supplanted by a "numerical" flux, which is a 
funct ion of the two solution states. In the present case, Roe's flux function 
[6] is used because of its simplicity. The  flux integral is then  approximated  by 
numerical  quadrature ,  see [4] for details. It should be stressed that the actual 
choice of  numerical flux funct ion plays a diminishing role of importance as 
the order of reconstruction is increased. This point  is i l lustrated in figure 3 
for schemes utilizing solution reconstruct ion of increasing order of accuracy 
together  with the scalar equivalent of Roe's flux function. 
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Figure 3. Circular adveetion (ut + .~ • V u  = O, ,~ = (y , - -x )  T) of  a linear 
discontinuity. (a) Schematic of flow, (b) mesh, (c) solution contours,  pieeewise 
constant  reconstruction,  (d) solution contours,  piecewise linear, (e) solution 
contours,  piecewise quadratic,  (f) solution comparison at inflow and outflow. 

§Simplified Least-Squares Reconstruction 

For the present three-dimensional  algorithm, we consider the simplified 
linear reconstruct ion procedure presented in reference [4]. Consider a vertex 
v0 and suppose tha t  the solution varies linearly over the suppor t  of adjacent 
neighbors of the  mesh with local cyclic index i. The  scaled project ion of the  
solution gradient  along an edge e(vi, Vo) can be calculated by (Vuh)0 • (~i -- 
r0) = ui -- u0. A similar equation could be wri t ten for all edges incident to 

242 



v0 subject to an arbi trary weighting factor: 

W l A X l  w l A y l  W l A Z l  

w n A x n  w n A y n  w ,~Azn  

[:x~ (Wl (Ul --~tO)~ 
y = i (2) 

or in symbolic form £ Vu = f, where / :  = [ ~1 J-J2 L3 ] in three dimensions. 
Exact  calculation of gradients for linear u is guaranteed if any three row 
vectors wi(fl  - f0) span all of three space. This implies linear independence 

of L],  L2, and 1"3- The system can then be solved via a Oram-Schmidt  
process, i.e., 

V~ ILl  f,2 f '3] = 1 (3) 
V~ 0 

The row vectors Vi  are given by Vi  - O~ where 

lJ i  = ( l k j j j  -- l j k l j k ) L i  -- (Ikklij  -- l jkli lc)I, j  -- ( l j j l lk  -- l j k l i j ) g k  

with llj = (L i  " £ j )  for all cyclic permutat ions of i , j ,  k 
d+l Note tha t  reconstruction of N independent variables in ~d implies ( 2 ) + 

d N inner product  sums. Since only d N of these sums involves the solution 
variables themselves, the remaining sums could be precalculated and stored 
in computer  memory. Using an edge data  structure, the calculation o f  in- 
ner product  sums can be calculated for arbi t rary  combinations of polyhedral 
cells. In all cases linear functions axe reconstructed exactly. This formulation 
provides freedom in the choice of weighting coefficients, wi. These weight- 
ing coefficients can be a function of the geometry and /o r  solution. Classical 
approximations in one dimension can be recovered by choosing geometrical 
weights of the form wi = 1/[~i - f0[ t for values of t = 0,1,2. Numerical 
computations shown in the next section were performed with t = 1. 

§Sample  N u m e r i c a l  C a l c u l a t i o n s  

F i g u r e s  4. (a) Closeup of ONERA M6 wing nea "p, ( ) r ace pressures 
and Cp distributions at several span stations• 
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Three-dimensional transonic flow computations over the ONERA M6 wing 
geometry have been computed using the method described above. Numer- 
ical calculations with Moo = .84 and a = 3.060 were carried out using the 
upwind code with least-squares gradient and Galerkin gradient [4] calcula- 
tions. Structured mesh results by Thomas, van Leer, and Waiters [7] using a 
161x41x31 mesh and experimental data [8] at a Reynolds number of 11.7 mil- 
lion are used for comparison. Figure 4b shows surface pressure contours on 
the wing surface and Cp profiles at several span stations. Pressure contours 
clearly show the lambda type shock pat tern on the wing surface. Figures 5a-b 
compare pressure coefficient distributions at two span stations on the wing, 
y /b=.44  and .65. The comparison with existing codes and experiment is very 
reasonable. Computat ion times are about 1.25 hour on a CRAY Y-MP. 
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F i g u r e  5. Pressure coefficient distributions at span stations, (a) y/b=.44,  
(b) y/b=.65.  
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I n t r o d u c t i o n  

In recent years numerical solutions of Euler equations in problems with discontinuities have 
been greatly improved by using total variation stable schemes, mainly developed in the finite 
difference framework. Various TVD (Total Variation Diminishing) and ENO (Essentially 
Non-Oscillatory) schemes have proven to be accurate and rdiable for the application to 
a large class of problems involving strong discontinuities. These methods, based on one- 
dimensional algorithms, are extended to multidimensional problems by directional splitting, 
thus implying the use of structured grids. However, the extension of these higher order 
schemes to the solution of Euler equations on unstructured grids, is not immediate: related 
work can be found in Barth [1], in ttarten and Chakravarthy [2]. 

More recently, Cockburn et al. [3,4] introduced a discontinuous finite element method in 
which accuracy is obtained by means of a high-order polynomial approximation inside the 
elements and a physically sound upwind treatment of the discontinuous solution at elements 
interfaces is employed. This method is perfectly suited for numerical discretizations on un- 
structured grids since it does not need wide stencils to improve the accuracy. Unfortunately, 
as usual in the high-order finite difference schemes, some kind of limiting is needed at dis- 
continuities to enforce total variation stability. The limiting procedure advised by Cockburn 
et al. [3,5] for triangular meshes and that by Bey and Oden [6] for quadrilateral meshes have 
a strong theoretical background and have proved effective in several test cases. However 
they cause the numerical scheme to loose the strict local nature offered by the unlimited 
discontinuous Galerkin approach. 

The aim of this work is to investigate by numerical experiments a limiting procedure 
that relaxes the time evolution of the degrees of freedom that express the deviation from 
the mean value of the solution inside each element. This rather crude approach has been 
found to yield very accurate results in a number of one-dimensional unsteady problems: 
and has highlighted the fact that this method should need a very weak limiting. We have 
also experimented this relaxation technique for two-dimensional steady state applications 
in order to find if this approach can be useful to drive the solution toward the steady state. 

In this paper we present computational results for several test cases, including a shock 
tube problem, a prototype of a shock-turbulence interaction, the flow in quasi-one-dimen- 
sional diverging nozzle, a double Mach reflection, a regular shock reflection. 

Discontinuous Galerkin f o r m u l a t i o n  

Consider the Euler equations written in strong conservation form 

Ou 
0--7 + V - F ( u )  = 0. (1) 
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By multiplying by a test function v, integrating over the domain ~ and performing an 
integration by parts we obtain the weak statement of the problem 

fnv OU d~ + L vF(u), nda-  /nVv .  F(u)dFt = O, (2) 
Ot 

where a denotes the boundary of ft. 
Let's denote by flh a subdivision of the domain ~ into a collection of nonoverlapping 

elements (segments in 1D and triangles in 2D). A discrete analogue of eq. (2) is obtained 
by considering functions Uh and Vh which are polynomials pk of degree less or equal to k 
inside each element, i.e., 

Uh = ~ V~(t)¢~(x), Vh = ~ ~¢i(x),  (3) 
i i 

where Ui and ~ denote the degrees of freedom of the numerical solution and of the test 
function respectively, and ¢i denote the shape functions. 

By substituting these expression for u and v in equation (2), the semidiscrete equations 
for a generic element E can be written as 

d t 
}E + }o n., ,  - L = 0, (4) d--~ 

where e denotes the boundary of element E. 
Due to the discontinuous function approximation, flux terms are not uniquely defined at 

element interfaces. It is at this stage that the successful nonoscillatory methodology of finite 
difference (volume) schemes is introduced in the present method. The flux function F(u) 
appearing in the second term of eq. (4) is in fact replaced by a consistent numerical flux 
function H(ul, ur) which depends on the two interface states ut and ur; among the several 
numerical flux functions proposed in the literature, in the present work we have used the 
exact Godunov flux for both the one-dimensional and the two-dimensional problems. 

By repladng the flux function F with the numerical flux H and by evaluating the inte- 
grals with appropriate Gauss quadrature formulas, we finally obtain from eq. (4) the system 
of ordinary differential evolution equations for the element degrees of freedom Ui 

M dUi -Fi- + R (U) = 0, (5) 

where M denotes the element mass matrix and R the vector of residuals obtained by as- 
sembling elemental contributions given by eq. (4). 

The time integration of this system is accomplished by means of the Runge-Kutta time 
stepping method with coefficients advised by Shu [7]. 

Limiting Procedure  

We regard the numerical solution in each element as the sum of the mean component and 
the deviation from the mean, i.e., 

uh(x , t )  =  h(t) + (6) 

Starting from an arbitrary set of shape functions (for example the cardinal functions we 
have actually used), we express the solution inside each element by using a new set of shape 
functions which allow to introduce as new degrees of freedom the solution mean and the 
linear and quadratic components of the deviation from the mean. 
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The evolution equations for these new degrees of freedom read as 

dAi  
d~] + R ( U )  = O, + a i R a , ( U )  = 0, 0 < ai < 1. (7) 
dt dt - - 

where U denotes the degree of freedom corresponding to the solution mean and Ai denote the 
remaining degrees of freedom. The coefficients al appearing in eq. (7) have been introduced 
to relax the time evolution of the deviation components. 

Also when dealing with steady state problems we found useful to relax the time evolution 
of the deviation components during the transient phase of the computations. Note that the 
steady solution is independent from the adopted relaxation coefficient. 

Numer ica l  Resu l t s  

The method has been applied to one- and two-dimensional problems both unsteady and 
steady. The considered one-dimensional applications are a shock tube problem, a simulation 
of a shock turbulence interaction and a steady quasi-one-dimensional flow in a divergent 
nozzle. The initial conditions for the unsteady problems and the geometry of the divergent 
nozzle are as follows: 

(pt ,uz,pl)  = (1,0,1),  (p r ,u , , p r )  = (0.125,0,0.1). (8) 

(Pl,uz,Pt) = (3.857143,2.629369,10.333333), x < -4 ,  
(p,, u,,p,) = (1 + 0.2 s in(sx) ,  o, 1) ,  x > - 4 .  (9) 

s(x)  = 1.398 + 0.347tanh(0.8x - 4), 0 < x < 10. (10) 

The prescribed inlet Mach number and the exit-to-total pressure ratio for the divergent 
nozzle computation are, respectively, M = 1.26 and P~/Pt = 0.746. 

In these one-dimensional computations we used quadratic elements and fixed the CFL 
number to 0.2 according to the linear stability analysis of Cockburn and Shu [3]; the re- 
laxation parameter a has been set to 2/3 for the quadratic component of the deviation, 
and to 1 (no relaxation) for the remaining components: this value of the coefficient a has 
been found by numerical testing and represent the limiting case to obtain a stable algorithm 
with a very limited amount of numerical dissipation. It is surprising that even such a crude 
choice for the coefficient a yields good results. 

The results displayed in Figures 1-3 show that for this class of problems the adopted 
discontinuous finite element approach allows to obtain highly resolved discontinuities with 
only very slight over- and under-shoots; in particular, it is worth noting that the density 
distribution of the shock-turbulence interaction problem is very accurately described even 
with a mesh of only 100 elements. 

Next we present the results obtained for the following standard two-dimensional test 
problems: the double Mach reflection and the regular shock reflection. For these problems 
we used p1 dements, C F L  = 0.2 and a = 1/2. In order to avoid any smoothing of the 
results, we have plotted the solution inside each element retaining the discontinuities at the 
element interfaces. In the double Mach reflection test case a Mach 10 shock that impinges 
on a 30deg ramp. The computationai mesh consisting of 8196 elements and has been 
constructed by means of the grid generation method described in Rebay [9]. The isodensity 
lines show that the results are comparable to the best ones presented by Woodward and 
Colella [8] for the same mesh density. The regular shock reflection example involves an 
oblique shock reflecting from the lower boundary of a rectangular domain. To enhance the 
shock resolution, this test case has been computed on the adaptively refined mesh. 
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Conclus ions  

A discontinuous finite element method has been employed to compute unsteady and steady 
shocked flows. The one-dimensional test cases show that it is possible to obtain highly 
resolved and very accurate solutions by using time evolution limiting without the need of 
sophysticated forms of spatial limiters that often degrade too much the favourable behaviour 
displayed by the solutions obtained using the unlimited scheme. The time relaxation limiting 
procedure has been used also for unsteady and steady two-dimensional problems: in these 
cases we do not obtain as good results as in the one-dimensional problems. This behaviour 
is probably due to the use of one-dimensional Riemann solvers to model wave propagation at 
element interfaces that do not correctly describe the two-dimensional situation. It is likely 
that some form of spatial limiting has to be employed to control the solution as long as this 
one-dimensional treatement is employed. 

In any case, the favourable behaviour displayed by the proposed scheme with constant 
relaxation parameters a/, allows to presume that the eventual form of spatial limiting, 
possibly necessary in more difficult problems, could be very weak and local. 

In the future we plan to carry out a more complete analysis to understand more deeply 
the time relaxation limiting approach and to investigate other forms of limiting which can 
be used successfully in conjunction with the discontinuous Galerkin method. 
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Figure 2: Numerical solution of the shock-turbulence interaction problem with 100 elements. 
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Figure 3: Numerical solution of divergent nozzle flow with 100 elements. 

Figure 4: Grid and density isolines of the double Mach reflection problem. 

Figure 5: Grid and Math isolines of the regular reflection problem. 
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I n t r o d u c t i o n  
A new high-accurate, efficient and flexible approach combining the advantages of TVD finite-volume 
schemes and adaptive unstructured grids in numerical simulation of strongly transient shocked gas 
flows is proposed. Inviscid, non-heat-conducting gas model is considered. The mass, momentum 
and energy conservation laws written in an integral form underlay the mathematical model. For two 
dimensions the governing equations are: 

/...:o+/.,/I.............-_o; 
Vol to o" 

puy ux 
u =  P~" t . . - -  P ~  + p F ~ =  p u ~ + ;  ' puy ' puxuy ' 

pe (pc + p)~. (pc + p ) ~  

where the conventional notations are used. Vol represents a gas volume bounded by the closed 
surface ~r with the outward normal Y = (u~, uy). 

T h e  shock-cap tu r ing  scheme  
A considerable progress achieved in shocked gas flow simulation during the recent decade is related 
to the rapid development of high-resolution schemes realizing new ideas and principles to provide 
high-order accuracy and nonoscillatory solution: TVD, TVB and ENO schemes. Today one can 
count more than ten different schemes of the above class proposed by various authors. Most of the 
schemes in the originals differ from each other both in designing mode and in formulation. In spite 
of the distinctions, an attempt has been made to range these schemes according to a certain system 
and select the best ones for a given class of gasdynamic problems on the base of the comparative 
analysis using a special set of test problems. The classification system and comprehensive testing 
are based on consecutive consideration of 1-d linear transport equation, 1-d and 2-d gas dynamic 
test problems [1,2]. 

As a result of the above testing a second-order Godunov-type scheme, proposed by P~odionov [3] 
for steady-state supersonic flows and modified for transient flows by the authors, has shown better 
properties in view of the compromise between computational effÉciency and accuracy. It does better 
also for unstructured grids with arbitrary shaped control volumes. The scheme represents a two-step 
predictor-corrector method providing second order temporal and spatial accuracy for smooth one- 
dimensional solutions. The predictor step does not employ the Riemann solver which provides its 
high efficiency: 

a. P r e d i c t o r .  For each control volume related to nodal point i we obtain predictor solution 0i: 

i 
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where subscript j denotes grid points surrounding node i; superscript n - time level; Voll - value of 
control volume i; ASij - area of volumes i and j interface; z7 = (~=, z~y) - unit vector of the outward 
normal to the control volume i surface; vi~ - primitive gas dynamic variables inside of the control 
volume surface; and 

Av~ = limiter {(vi -- vi-1), (vj - v~), (vj -- vi- , )}  ; 

Avi¢9 = limiter {(vj -- v~), (vj+l -- vj ), (vj+l -- v~)}; 

limiter(a, b, c) = 0.5[sign(a) + sign(b)] min(2 lal, 2 Ibl, .5 Icl) 

where subscripts "i - r '  and "j + 1" correspond to the points which are placed on the straight line 

( i , j ) ,  so that ( i -  1,i i = ( i , j  i = ( j , j  + 1 i. 
We remark here that in case of structured grids, points i - 1, i, j ,  j + 1 usually belong to the 

same grid line, when for unstructured grids we have to take an additional assumption about gas 
dynamic values in points i - 1 and j + 1 because there is no grid lines in this case. 

It should he noted that even though the predictor step is not conservative because "inside" 
and "outside" fluxes through the control volume surface differ from one another, the results of 
the predictor step are used only to compute the fluxes for the corrector step which provides the 
conservative property of the scheme in general. 

b. Co r r ec to r .  For each volume i we have for time level (n + 1): 

U/n+lVoll = U/nVoli - At ~ {F= (wij) zJxASij -I- Fy (wij) z~yASij} , 
J 

where wq - primitive gas dynamic variables obtained from the Riemann problem solution for 9~y 
and 9out. i.i , 

-in ~- ; ~out .5 (vj - Av°?t) " 
+ + D = + , 

~, ~j are the results of the predictor step; and ~ = ~ut.  
The timestep At is chosen so that the Courant stability criterion is satisfied [4]. 

U n s t r u c t u r e d  f i n i t e -vo lume  m e t h o d  
The following reasons stimulate CFD researches to give up traditional structured grids: 1. structured 
grids are hardly being fitted to complicated geometries; 2. it is hard to construct a structured grid of a 
desirable quality at points of geometry singularities (e.g. symmetry center or axis); 3. structured grids 
cannot be adapted to the solution containing numerous or diversely shaped discontinuities, especially 
in transient case. The advantages of the unstructured grids consist in natural grid conforming to 
complicated geometries and in possible adaptation of the grid to the solution peculiarities. 

We have used unstructured grids composed of triangular area elements in two dimensions, which 
provides more isotropic spatial discretization as compared to traditional rectangular grids. Usually, 
unstructured grids are used together with the finite element methods (for instance, FEM FCT [5]), 
however, the most accurate shock capturing technique for the above problems is provided by the 
finite-volume TVD approach [6]. The finite-volume diseretizatioff for TVD scheme is analogous to 
the method described in [6]. 

Let us consider two-dimensional gas flow in a cartesian coordinate system. We establish a 
triangular grid on the computational domain. The vertices of the grid triangles correspond to the 
nodes in which dependent gas dynamic variables are given. The control volumes are constructed 
around each node as shown in Figure 1. The control volume side c3Sij placed between nodes Ci and 
Cj is formed by straight lines connecting the centers of triangles C~CjCk and CiCdCI with the middle 
of segment CiCj.  The scheme calculating gas dynamic fluxes through the volume side OSij requires 
gas dynamic variables in nodes C/ and Cj and also in points Ci-1 and Cj+I which do not coincide 
with mesh nodes. Values vi-1 and vj+l are obtained using interpolation/extrapolation procedure 
based on the triangles C~CmC,~ and CjCpCq respectively. 
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Figu re  1. Control volume 

The local grid a d a p t a t i o n  
The unstructured grid automatically adapts to the solution using refinement/coarsening technique 
similar to [5], which saves CPU time and computer memory consumption by more than an order of 
magnitude as compared to the uniform refinement. Unlike [5], the original data structure underlaying 
the developed computer code is based on mesh nodes assembling, which fits better to the control- 
volume method and allows to reach excellent efficiency. The data structure needs 7 words per mesh 
node to storage cross-references for fixed grids and 14 for adaptive grids. No memory to storage 
"parent" and "son" cells is required. The refinement/coarsening procedure called at each time step 
takes about 1% of CPU time consumed by the scheme. 

Figure 2 shows the six allowable modes for the triangular cells' division and three for their 
confluence [5]. 

/L_ 
F i g u r e  2. Allowable refinement/coarsening cases 

/k 

Following reference [5], we utilize here the refinement/coarsening criterion: 

3 

where j denotes the neighbors of the node i (see Figure 1), and 

Iw~ - 2w~ + w~-~l 
E~ = IW~ - W~I + IW~ - ~ - ~ 1  + cn 

~,, = ~(IW>I + 2 IW~I + IW,-~I) 

According to El values all the nodes are marked. If E~ > T,., all the triangles of mutual vertex 
C~ should be fractionized (refinement). If E~ < T¢, the node C~ might be removed (coarsening). 
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F i g u r e  3. The t ime history of a toroidal shock wave interaction with the symmetry axis and 
wall (density contour lines and the respective grids) 

The typical values of the refinement and coarsening thresholds and filter coefficient are: Tr = 0.02, 
Tc = 0.007, ~ = 0.05. As a key variable W we have used gas density. The refinement algorithm is 
described in detail in [4]. 

Numerical examples 
Several gasdynamic problems have been solved using the developed method and code: shock wave 
diffraction over a 90 degree corner [7,8], initially plane shock wave propagation through plane channel 
bends [2], toroidal shock collapse near a wall, shock wave diffraction over a circular cylinder and some 
others. For lack of space, consider here only the last two problems. 

The time history of toroidal shock collapse near a wall is shown on Figure 3. The toroidal shock 
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is formed by instant gas heating in a volume shaped like an anchor-ring. Approaching the symmetry 
axis the shock becomes stronger and reaching the axis reflects, which results in extremely high 
pressure and temperature. The incident shock reflects on the symmetry axis and wall irregularly, 
forming Much disc and cylindrically shaped Much stem respectively. The simultaneous interaction 
of the converging Mach stem with the axis and the Mach disc reflection from the wall increase gas 
pressure and temperature much higher than by the first collapse. As to numerical simulation, we 
remark here that a high resolution is required because the shock collisions of interest occur in very 
small regions as compared to the spatial scale of the computational domain. 

Figure 4 shows two instant density contour level plots and the respective grids for shock wave 
Ms = 3 diffraction over a circular cylinder. 

F igure  4. Shock wave M~ = 3 diffraction over a circular cylinder (density contour lines and the 
respective grids) 
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I n t r o d u c t i o n  

The exponential growth of computer  speed and storage capacity as well as algorithm 
sophistication has allowed application of advanced numerical methods to practical 
design problems in many engineering disciplines such as fluid dynamics and aero- 
dynamics. More and more use is being made of numerical methods in analyzing 
complex flow fields than has been possible in the past. Intelligent use of such capac- 
ity can be very helpful in eliminating the poorer designs and in allowing promising 
design configurations to be developed with less reliance on extensive wind-tunnel 
testing. In addition, CFD offers the opportuni ty  to obtain detailed flowfield informa- 
tion; some of which is either difficult to measure in a wind-tunnel or is compromised 
by wall effects, provided that  results are accurate as well as cost effective. The 
problem of code validation is thus of crucial importance. 

In this paper, an exercise performed in Alenia Aeronautica in order to validate 
an Euler code for the computat ion of transonic flows past a new generation of 
fighter aircraft, is reported. Through this exercise, we want, above all, to assess the 
reliability of the unstructured grid generator and solver which were both developed 
in house. 

M e s h  g e n e r a t i o n  

An optimal mesh generator should be able to handle complex aeronautical 
configurations with the minimum effort required by the user. This is a very difficult 
task to achieve, and it is very likely that  a full automation of the gridding process of 
any realistic 3-D configuration will never be achieved in practice. However, it is felt 
that  the use of unstructured grids can provide the flexibility for a highly automated 
mesh generation process. The algorithm adopted here is a variation of the front 
advancing technique, in the form which has been originally developed by J. Peraire 
et al., and which is described in some detail in [1,2]. The major characteristics of 
this method are: 

• It allows to vary, almost arbitrarily, the mesh density over the computat ional  
model. 

• It allows to generate anisotropic meshes, i.e. meshes where the elements may 
be "stretched" along a particular direction. 

• It generate nodes and elements at the same time. 
• It follows a "geometrical hierarchy" which is suited for interfacing with 

existing CAD sys tem.  
Adaptivi ty may provide a bet ter  solution accuracy without an excessive increase 

of the number of grid points. Unstructured grids lend themselves to a variety of mesh 
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adaptation methodologies such as mesh movement, mesh refinement and remeshing. 
The generation process may be subdivided into two stages: 

1 Boundary discretization 
2 Domain triangulation. 

In stage (1) the computational domain boundary is completely covered with a surface 
mesh formed by triangular facets. In stage (2), a mesh formed by thetrahedral 
elements is generated, starting from the boundary surface and advancing inside the 
domain. The generation front is here defined as the dynamic data structure which, 
at any stage of the generation process, will contain the connectivity of the triangular 
faces which are currently available to form the base for a new element. Everytime 
a new element is generated, the front is updated by appropriately inserting the 
tetrahedron faces, so that at the end of the generation process the front is empty. 

Euler  solver 

The code UES3D developed by Alenia Aeronautica D.V.D. solves the 3-D Euler 
equations on unstructured grids and is able of engine intake/outlet massflow simula- 
tion [3]. It is based on an explicit time marching scheme employing a node-centered 
finite-volume-based central difference spatial discretization. 

Spatial approximation is obtained from the integral equations of mass, momen- 
tum and energy in a polygonal control volume Ci which is built surrounding each 
vertex S~ of a finite element type grid, which consists of tetrahedrons. In particular, 
the flux balance is evaluated by splitting the control volume boundary into panels, so 
that each panel is shared by a pair of cells C~ and C~. Thus, the flux balance reduces 
to the sum of the contributions due to each panel over which we assume that the 
fluxes are constant. A second-order spatial approximation is obtained by computing 
the fluxes at the interface as the average value. Non linear second-order and linear 
fourth-order damping terms are added for stability and shock-capturing properties. 
Time integration is performed explicitly using a multistage algorithm. Convergence 
is accelerated with the aid of local time stepping and residual smoothing. 

Numer ica l  exper iments  

An exercise performed in order to validate the previous tools for the computa- 
tion of transonic flows past a very complex aircraft configuration is described here. 
Figure 1 illustrates the model inside the wind tunnel, which emphasizes the geome- 
try complexity. This includes foreplanes, tippods, stubpylon+launcher+missile, flap 
jackfairings, . . . .  The experimental model, manufactured in 1:13 scale, is instru- 
mented with 800 pressure taps on port wing upper surface, starboard wing lower 
surface fuselage and fin-rudder. The model is provided with a 5 components main 
balance (Cn, C~, Cy, Cyaw, Cron). The aim of the tests was to provide pressure 
data from the wings, fin and fuselage and to integrate these pressures to obtain 
aerodynamic loads and load distributions. They have been successively used for 
code validation. Our interest, here, will be mainly on pressure data measured on 7 
wing sections as indicated in Fig. 2. 

The surface definition consists of 154 surfaces provided by a CAD system. Due 
to the numerous amount of surfaces, one week has been necessary to generate the 
surface mesh which is shown in Fig. 3. However, the 3-D mesh has been completely 
generated in one night of Workstation. The grid obtained was made of 141339 nodes 
forming 763566 elements with 17450 nodes on the airplane skin. 
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Fig. 1: View of the experimental model Fig. 2: Location o.f the wing pressure taps 
section 

Fig. 3: Sur]aee mesh 

The Euler code is quite fully vectorized. In particular, a coloring algorithm has 
been employed in order to avoid data dependencies. Time integration is usually 
performed using a four-step multistage algorithm where the artificial viscosity terms 
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are evaluated twice. The scheme uses approximately 45 microseconds of CPU time 
per node and per cycle on a single processor CRAY Y-MP 2E computer.  Residual 
averaging technique requires thir ty  percents of this time. Steady state solution 
(decrease of four order of magnitude for the residual) of a typical transonic flow 
past a complete configuration using about 150000 nodes can then be obtained in 
less than one hour of CPU time. The memory required is about 70 words per node. 
A modification of the geometrical definition and the related solution can be obtained 
in less than a day. Consequently, this numerical strategy can be profitably used in 
an industrial environment. The Iso-Cp lines on the aircraft surface, obtained at 
Moo = 0.8 with a 4 ° angle of attack and a 2 ° yaw angle, are given in Fig. 4. In this 
computat ion an engine simulation has been made by imposing the mass flow ratio. 

Fig. 4: Iso-Cp contours 

Figure 5 finally shows a comparison between measured and computed pressure 
coefficients at 6 different s tarboard wing sections. The correlation between experi- 
mental and numerical data  is quite satisfactory. A good accordance has been found 
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on the windward side of the wing. Some discrepancies appear on the leeward side, 
especially on the outboard sections due to stronger viscous effects which are not 
taken into account in our numerical model .  

Fig. 5: Numerical (lines} and experimental (symbols} Cp values for 6 wing sections 

C o n c l u s i o n  

A numerical procedure to solve inviscid compressible flows about complex geometries 
has been described. Numerical solutions of transonic flows around a complete fighter 
aircraft has been compared with available experimental data. The results are quite 
satisfactory except in regions where viscous effects are important, which is a known 
limitation of the numerical model. Overall time for grid generation and solution are 
sufficiently low to use these tools for production. 
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INTRODUCTION 

Simulation of flows around three-dimensional bodies is a major issue in computa- 

tional fluid mechanics. Geometrical and flow-field complexity combine to make 3-D 

computations a pacing item. Generation of a body-conforming grid has proven to be 

a difficult task [1]. Generation of a structured grid may be significantly dependent on 

geometry and user proficiency. A radical alternative to structured meshes is to use 

tetrahedra to fill the computational domain. Tetrahedral grids provide flexibility in 

3-D grid generation since they can cover complicated topologies easier compared to 

the hexahedral meshes [1, 6]. However, regions of high gradients, such as a boundary 

layers, require very thin tetrahedra, which is very difficult to generate. 

Prismatic cells, however, are a suitable choice as their semi-unstructured nature 

allows for very thin cells in the direction normal to the surface while maintaining 

geometric flexibility in the lateral direction. The prismatic grid region consists of 

triangular faces that cover the body surfaces, with quadrilateral faces extending in the 

direction normal to the surface. The topology of a prismatic grid is shown in Figure 1. 

Employment of a directionally structured grid has some important advantages over fully 

unstructured grids. First, an implicit numerical scheme that would alleviate stiffness of 

computations, due to a larger allowable time-step compared to corresponding explicit 

schemes, is possible in the "structured" direction. Second, implementation of algebraic 

turbulence models on semi-unstructured grids is much simpler when compared to a fully 

unstructured grid case [2]. Third, in comparison to tetrahedral grids with comparable 

resolution, the prismatic grid requires significantly less memory, which is essential to 

three-dimensional Navier-Stokes computations. The structure of the prismatic grid in 

one of the directions can be exploited in order to reduce storage to the amount required 
for two-dimensional Navier-Stokes solvers with triangles [4]. Up to the present, very 
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few prismatic grid generators have been under development [3, 5]. The present prisms 

generator is a coupled algebraic / elliptic method. 

GENERATION OF PRISMATIC GRID 

An unstructured triangular grid is employed as the starting surface to generate 

a prismatic grid. This grid, covering the body surface, is marched away from the 

body in distinct steps, resulting in the generation of structured prismatic layers in the 

marching direction (Figure 1). The process can be visualized as a gradual inflation of 

the body's volume. There are two main stages in the algebraic grid generation process. 

In the first, the destination of the marching surface is determined by employing a new 

technique based on voxels; in the second, the nodes are positioned on that surface by 

determining the marching vectors corresponding to the nodes: of the previous surface. 

The marching scheme reduces the curvature of the previous marching surface at each 

step while ensuring smooth grid spacing. 

Direct control of grid orthogonMity and spacing is a main advantage of the Mgebraic 

method. Algebraic grid generators may yield a grid that is non-smooth and that may 

overlap. A grid generator must produce a grid with no overlapping faces, which may 

occur especially in concave regions. In both stages of the present algebraic method 

elliptic-type steps are employed in the form of Laplacian smoothing. 

Smooth Voxel Generation 

A voxel is a three-dimensionai element used to approximate a point in space. It 

may have any shape which will entirely fill a domain when voxels are placed adjacent 

to each other, thus conserving the volume. In the present work, parallelepiped voxels 

are used. The voxel representation of an object comprises all voxels partially occupying 

any part of the object. Figure 2 shows the voxel representation of the surface of an 

F-16A aircraft. 

In general, the voxel representation is externally bounded by quadrilateral faces 

which do not intersect the object. It is this aspect of voxel representations which 

allows them to be used to generate a conformal surface. The voxel face structure is 

smoothed in a manner which prevents voxel nodes from moving toward the marching 

surface. Laplacian-type of smoothing is applied a number of times (typically 10-20). 

The resulting smooth surface will be termed the target surface. Nodes forming the 

triangular faces of the prismatic grid need to be placed on this surface. Figure 3 shows 

the corresponding smoothed voxel representation of the same aircraft surface as in 

Fig. 2. It should be emphasized that the resulting target surface has reduced surface 

curvature compared to the marching surface. Concave regions are "filled-in", while 

convex areas are smoother. 

Node Normals and Marching Vectors 

One main issue of the present method is determination of the vectors along which 

each node of the triangular surface of the previous layer of prisms will march (marching 
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vectors). The initial step is calculation of the vectors that are normal to the surface 

at the nodes. Such normals are frequently difficult to define, since the grid marching 

surface may comprise discrete faces of discontinuous slope. Furthermore, nodes that lie 

on concave surfaces must march away from the concavity. Al~o, as the node marches, it 

must not intersect the current marching surface prior to intersecting the target surface. 

This situation is avoided by enforcing a visibility condition [3], which constrains the 

marching vectors such that the new node position is visible from all faces surrounding 

the node. This region is tile visibility region. It has the shape of a polyhedral cone 

extending outward from the node as shown in Fig. 4. To simplify the constraints, 

a visibility cone with a circular cross-section and centered on the normal vector is 

constructed at the node. This cone lies completely within the visibility region. The 

normal vectors are then defined using a method described in [3]. 

Advancement and Smoothing of Marching Surface 

The nodes on the previous surface are connected to the points of intersection of the 

target surface and the marching vectors. Marching to a point on the target surface may 

result in a reduction in face area caused by "convergence" of the marching grid lines. 

This will yield a non-uniform mesh; eventually, overlapping may occur. This situation 

may arise during growth of concave regions due to decrease in the surface area available 

for node placement. The nodes on the target surface are redistributed by applying a 

Laplacian-type operator to the marching directions so that the surface elements change 

their areas and curvature smoothly. 

Distribution along the Marching Lines 

Flexibility in specifying grid-spacing along the marching lines is crucial for accuracy 

of Navier-Stokes computations. The marching process generates a relatively small 

number of prisms occupying a relatively large volume and is therefore an undesirable 

grid for Navier-Stokes computations. This is remedied by generating new prisms with 

user-specified dimensions within the original prisms. 

The prisms generated by marching the surface form a skeleton mesh of valid prisms 

within which any number of new cells may be generated. A scheme is employed which 

distributes new nodes along each one of the marching lines emanating from points on 

the body surface. In other words, the marching directions are maintained, but the 

marching distances are modified. This is accomplished by performing a cubic-spline fit 

to each of the marching lines using the prism node locations for the spline knots. New 

nodes are then distributed along the splined lines. The distribution is such that the 

new node positions satisfy certain grid spacing requirements. 

AIRCRAFT APPLICATION 

An F-16A aircraft geometry was chosen as a case for the developed grid generator, 

since the complexity and singularities of the surface are a severe test for the method. 

The main features of the configuration are the forebody, canopy, leading-edge strake, 
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wing, shelf regions, and inlet. The surface triangulation consists of 2408 triangular 

faces, and of 1259 points, Generation of a prismatic grid around this geometry is quite 

complex, and especially so at the junctions between the different aircraft components. 

Two parts of the generated prismatic grid require examination in terms of quality. The 

first is the grid formed by the triangular faces of the prisms (unstructured part), while 

the second is the grid formed by the quadrilateral faces (structured part). 

Two views of the initial and grown surfaces are shown in Figures 5 and 6. The 

effect of the marching process is similar to inflating of the original body volume. It 

is observed that the distribution of points on the grown surface is quite smooth. The 

highly singular regions at the aircraft nose, the wing leading and trailing edges, the 

wing tip, the canopy, as well as the inlet, have been smoothed-out on the grown surface. 

Furthermore, the grid spacing on the grown triangular surface is smoother compared 

to the initial triangulated body surface. The singular concave regions at the junctions 

between the wing and the fuselage, as well as between the engine inlet and the body 

have been "filled-in", and the grid is more uniform over those regions compared to the 

initial grid on the body. A view of the structured part of the prismatic grid is shown 

in Fig. 7. The grid spacing on the quadrilateral surface is quite uniform. Furthermore, 

the marching lines emanating from the aircraft surface are quite smooth, including the 

ones that correspond to singular points. 

The number of prismatic cells is 96320 and the number of prismatic grid nodes is 

50360. The required computing time for the prismatic grid was 1742 seconds on a Sun 
station of 2 mflops of speed. 

Main advantages of the developed grid generator are its simplicity, low computation 

cost, its direct control of grid orthogonality, spacing and smoothness, as well as its 

generality for treatment of complex 3-D geometries. 
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Figure 1: Prismatic Grid Topology 
Figure 2: Voxel Representation of F-16A 

Figure 5: Foreview of Initial andl 
Outermost Prism Surface 

Figure 7: Cut through prismzLtic grid showing 
filling of concavities 
near .the str&ke/fuselage junction 

Figure 3: Smoothed Voxel Representation of F-16A 

Figure 4: Visibility region 
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1. INTRODUCTION 

The multigrid methods are well established as fast and robust solvers but 
further development is essential in order to accomplish the solution of 
complex equations in a few work units. Although multigrid methods were 
proposed initially as grid adaptation procedures only few adaptive multigrid 
schemes such as the MLAT [1], the FAC [2] and other similar schemes [3] have 
been developed and applied only to elliptic type equations. On the other hand, 
adaptive schemes for hyperbolic systems of equations have not been developed 
in a systematic way taking advantage of the favourable multigrid environment 
[4] although some attempts have been made [5] .  At the present study a 
dynamically adaptive scheme is introduced including a solution error 
prediction [8] and a composite grid structure of rectangular blocks entirely 
based on a welltried multigrid method [7]. For the integration and relaxation 
of the Euler equations an unfactored implicit upwind finite volume scheme is 
employed. Using the proposed method stable and very accurate results are 
obtained in a few number of work units. 

2. FINITE VOLUME DISCRETIZATION 

The basic equations are the conservative time-marching Euler equations in 
two dimensions and for the solution of the hyperbolic system a cell-centered 
finite volume method with a Newton linearization scheme for the evolution in 
time is used, allowing high CFL numbers (100-200): 

AU n A'--q-- + (AnAU)~j + ( B n A U ) 1 "  I -- " (E~+ Fn n) = - Res (U n) (2.1) 
where E and F are the flux vectors normal to the ~ and ~ faces respectively, 
while A and B are the jacobians of the fluxes E and F. Upwind differencing of 
the flux vectors is used to reach diagonal dominant system of equations, hence 
a symmetric collective point Gauss- Seidel relaxation scheme is implemented 
efficiently. For the flux calculations a linear locally one- dimensional 
Riemann solver (Godunov- type) is employed thus, the homogeneous property of 
the Euler fluxes [6] is guaranteed. The mean values of the conservative 
variables at both sides of the faces are used as flow variables for the 
Riemann solver. For the calculation of the fluxes E and F the conservative 
variables are extrapolated up to third order (MUSCL- type) in computational 
space at both sides of each face (using two volumes on each side of the 
corresponding face) depending on the sign of the eigenvalues while sensors are 
used to guarantee monotonic behavior of the solution. 

3. THE BLOCK ADAPTIVE MULTIGRID M E T H O D  

The Block Adaptive Multigrid (BAM) method is based on three main parts: 
the fast nonlinear multigrid solver, the truncation error prediction and the 
composite grid solver, while an efficient solution strategy is essential in 
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order to obtain a fast and robust dynamically adaptive method. 
With respect to the multigrid acceleration the FAS formulation with the 

"alternate point of view" [7] is implemented, considering the finer grid 
levels as devices to increase the spatial accuracy of the solution and the 
coarser grid levels as devices to accelerate the solution process. The 
formulation of the problem is independent of the grid level (coarse or fine) 
and the type of grid (local or global), adding to the RHS of eq.(2.1) the 
fine-to-coarse defect correction (1:). Thus, the common formulation of the 
problem for the n-th grid level, when m denotes the corresponding finest grid 
level and m+ 1,..,N the next coarser levels, is given by: 

L n • AU = -Resn(Un ) + x n+l (3.1) 
n n 

considering that: 
n+l 

"cn+ln = 5~n+lLn n" AUn" Ln+ 1- (I n AUn) and z TM = 0 (3.2) 

As the multigrid coarsening is ceUwise (a next coarse volume is formed by 
four finer ones) the restriction operator (I) for the physical variables is 
the weighted volume average while the restriction (Z) for the generalized 
residuals Res and x is the summation of the residuals of the corresponding 
fine volumes, considering that the flux integrals of the inner common faces 
are cance led  so flux conservation is maintained. For the coarse-to-fine 
direction only the prolongation of the AU variables is required as no 
relaxation work is done, so cellwise bilinear interpolation is sufficient. 

In order to determine the erroneous regions of the computational domain 
where refinement is required, a reliable error estimation should be employed. 
Based on the Richardson extrapolation an estimation of the truncation error is 
formulated as Q(h)-u = c h p where Q is the differential operator, u is the 
physical solution, h is the mesh size, p is the local order of accuracy and c 
is an unknown factor which is considered as grid independent. Guided by the 
physical interpretation of the truncation error, the difference of the 
residuals between the fine and the corresponding coarse volumes can provide a 
reliable local estimation of the solution error and moreover a prediction of 
the error for the next finer grid level. Due to the Newton linearization 
currently used, the Res(U) differential operator is more suitable than the 
L .AU operator for the truncation error estimation as the former is insensitive 
to the relaxation errors maintaining the accuracy of the solution. So the 
truncation error estimation (T = Q(h),u) for the current grid and the 
prediction for the next finer grid are given respectively by: 

"I n+ l -  z:+lResn(Un)-ReSn+l(I:+lun) and T~nl= 2 -p T a+l (3.3) 
n - -  - n 

This error predictor requires only an additional quarter of the currently 
integration work, it is valid for nearly convergent solution (Resn(Un) * 0) 

and moreover converges fast to its steady state value. In order to specify the 
order of accuracy (p) the sensing functions that are used to control 
monotonicity near discontinuities by the integration process are used also to 
calculate the reduction of the order of accuracy at these regions. 

In order to realize the adaptive solution for complex problems several 
additional issues have to be settled. A composite grid structure is employed 
which enables the solution of a non uniform grid using a union of uniform 
subgrids. When the subgrids are restricted to rectangles (blocks) in the 
computational plane [4] significant simplifications to the data structure and 
the interface treatment are obtained. To suppress the errors not consistent 
with the solution method at the artificial boundaries due to the existence of 
"hanging" nodes, extra artificial boundary conditions are required, namely 
flux conservation, a compatible variable extrapolation scheme and a special 
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relaxation process. According to the multigrid coarsening a coflapatible 
refinement process is chosen hence, two fine volume faces form a coarse one. 
Thus, the flux conservation at the artificial boundaries is achieved 
explicitly, calculating first the fluxes at the fine subgrid faces, while the 
fluxes of the adjacent faces of the coarse subgrid are the summation of the 
corresponding fine grid fluxes. In order to calculate the fine grid fluxes at 
the artificial boundaries the same integration subroutine is used but an 
accurate extrapolation towards the adjacent coarse volumes is required as 
shown in fig.1 for the one dimensional example. Thus, from the coarse volumes 
1,2 and the fine ones 3,4 in fig.1 the two virtually equivalent fine volumes 
5,6 are calculated using the same MUSCL- type extrapolation scheme which is 
used by the integration process, considering that the order of accuracy and 
the compatibility with the initial integration scheme are maintained. Finally, 
for the flux vector splitting and the relaxation process the interface 
problems are handled by the multigrid cycle. As shown in fig.1 only the fine 
block (block 1) is relaxed at the first grid level, while at the next 
multigrid level the coarse block (block 2) is relaxed together with the 
restricted fine one preserving the block structure throughout the multigrid 
cycle using a "horizontal" communication scheme among blocks. 

With respect to the dynamically adaptive multigrid strategy a modified 
Full Multigrid scheme is applied. That is: starting from a global coarse grid 
with an acceptable solution accuracy after convergence (or after a fixed 
amount of work) the truncation error estimation is applied and where the error 
estimate is above a threshold the corresponding volumes are  flagged and 
grouped into rectangular blocks. Then, the computational domain is decomposed 
to the appropriate blocks where only those which contain the flagged volumes 
are refined to the next grid level and the solution procedure continues until 
the entire computational domain is below the truncation error level and the 
solution has totally converged. This strategy has the benefit of a continuous 
procedure taking advantage of the most accurate available solution it 
converges faster towards the best solution, hence no wasted operations occur. 

4. RESULTS 

In order to validate the efficiency of the proposed method two test cases 
are investigated: the first case is a NACA-0012 airfoil for Mach 0.85 and 
angle 1.0 degree while the second case is the RAE-2822 airfoil for 0.73 Mach 
and 2.79 degrees. A Work Unit (W.U.) is defined by the CPU-time required for a 
global finest grid relaxation sweep in lexicographic order. Results for the 
multigrid implementation to global fixed grids [7] as well as for the 
truncation error estimation [8] can be found for inviscid and viscous flows. 

For both test cases an automatic adaptation process as described 
previously is applied starting with two global multigrid levels with 64x14 
volumes at the finest grid level. The user supplies only the number of the 
additional grid levels and the truncation error threshold, which for the 
present test cases were kept the same: two additional refinement levels and a 
three-fold reduction for the initial truncation error levels. It is important 
that throughout the solution process the multigrid convergence rate was 
maintained and the overhead for the interface manipulations was only 2 % for a 
nine block structure with respect to an equivalent .global grid. Thus, the 
required work for the solution of an adaptive grid is proportional to the 
number of volumes with the same convergence rate as the global multigrid 
solution, i.e. the acceleration of the BAM method with respect to the global 
multigrid equals the reduction of the number of volumes. 

For the first case the convergence of the drag coefficient (solid lines) 
and the truncation error estimation (dashed lines) with respect to the number 
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of volumes are given in fig.2 where a great similarity between the error and 
the accuracy is shown. In fig.3 the superiority of the BAM method with respect 
to the single grid and the global multigrid schemes is shown, where a 14-fold 
acceleration was achieved with respect to the single grid case using 3.2 times 
less volumes for practically the same accuracy (0.5% discrepancy of the Cd). 
The final composite grid structure and the corresponding mach contours are 
shown in fig.4 where the quality of the solution is exactly the same as for 
the global solution even where shock crosses the artificial boundaries. 

Similar efficiency was achieved for the second test case where the finest 
refinement regions spread only at the upper region of the airfoil (fig.6). 
Using the same truncation error threshold the total number of volumes is less 
than the previous case, so a 17 times acceleration was achieved with respect 
to the single grid and a four-fold reduction of the volumes for almost the 
same accuracy (CI discrepancy is 0.2 %). The convergence histories of the 
error reduction and the lift coefficient are shown in fig.5 while in fig.6 the 
final composite grid together with the isomach contours are given. 

5. CONCLUSIONS 

The great advantages of the Block Adaptive Multigrid (BAM) method were 
exhibited. The incorporation of numerous efficient schemes into the BAM method 
is very promising as the ultimate target of solving complex problems in just a 
few work units is feasible, maintaining the robustness, the simplicity and the 
accuracy of the single grid code. Although many issues still have to be 
settled, the extension to the viscous three dimensional problems as well as 
the implementation of the BAM method to parallel machines are expected to be 
straight forward and very promising. On the other hand, in order to improve 
the adaptation capabilities and the efficiency of the BAM method a moving grid 
point scheme should also be considered as the grid alignment towards certain 
flow features is essential in some problems in combination with the present 
grid refinement method. 
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I N T R O D U C T I O N  
R. A. Nicolaides 1-3 has developed an interesting" algorithm for unstructured 

grids based upon a discrete ally-curl formulation on a dual set of complementary 
control volumes or co-volumes. The main features of the approach includes the 
approximation of V • V within a triangular mesh T, see Fig. la, such that 

r i 

where only the normal components of velocity q = l~ • ~ and the lengths of the 
triangle edges, h~, appear. The curl of V is approximated on the complementary 
control volume ~_1, formed by the connection of all the circumcenters of the triangles 
surrounding a particular node, as shown in Fig. lb. For a Delaunay triangula- 
tion, the resulting polygon co-volume is the Vornoi diagram for the nodes of the 
triangulation. An approximation for the vorticity may be found from 

where it may be observed that the same velocity components which are normal 
to the  triangle edges, are tangential to the sides of the co-volume. The directed 
lengths are denoted lj. Some candidate approaches to the solution of the Navier- 
Stokes equations have been described in Ref. 1 and calculations have been presented 
in Ref. 3 for the radial flow in a channel. 

~ J 

J+ l  

Fig. 1 Triangular and Complementary Control Volumes 
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F O R M U L A T I O N  

We have developed new procedures to apply this algorithm to the Navier-Stokes 
equations within a finite-volume formulation on an unstructured mesh of triangles 
and their associated co-volumes. The vorticity-velocity form of the governing equa- 
tions is used in integral conservation-law form, with the vorticity transport equation, 

d / f~ ,wdS + ~o~., (wP'- ~'Vw) "C~dl=O, (3) 

the continuity equation, 

and the vorticity definition 

flo~- ~" " ¢t dl = O, (4) 

Ili ads  = ~. ,  V. {dl. (5) 

The discretization of the (3)-(5) may be performed in a straightforward manner 
using (1) and (2), with the exception of the non-linear convection terms. One can 
note that the discretization of fo~-, w~'. ~ dl, will involve the average of w at neigh- 
boring nodes times the velocity normal to each edge of the co-volume. However, we 
have only defined the velocities normal to the triangle sides, which are tangential to 
the co-volume edges. A reconstruction of the velocity field from the normal veloc- 
ity components in the triangular domain is performed by assuming that the vector 
velocity is constant in each triangle. The vector velocity may be then determined 
from any two cell-edge normal velocities. The tangential velocities along the side 
of each triangle are then easily constructed. The value of the normal velocity to 
the co-volume edge is then taken as a weighted average of the tangential velocity 
over the edges of the neighboring triangles. We have verified this form of convective 
differencing will have the added benefit that it enforces div V = 0 on the co-volume. 
(This procedure was independently verified recently in Ref. 3). The system is closed 
by specifying the normal and tangential velocities on the boundaries. The boundary 
vorticity is computed from Eq. (3) for the partial co-volume centered on the bound- 
ary node as illustrated in Fig. 2. For cases where the domain is multiply connected, 
such for the flow about an airfoil, one additional boundary condition is required. 
We specify the normal velocity at a single cell-edge near the outer boundary of the 
domain. 

Fig. 2 

J+l 

Complementary Control Volume Near Boundary 
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This procedure has been incorporated with a fully implicit time integration. A 
steady-state solution is developed using an infinite time step and a direct method 
to solve the resulting sparse matrix system. Due to the quasi-linearization of the 
non-linear convective term in Eq. (3), the solution will be iterative. For the two- 
dimensional applications considered here we have implemented a stream function, 
¢ defined at the triangle vertices which reduces the memory requirements for the 
direct solver. The cell-edge velocity, q is simply the difference in ¢ at the two vertices 
divided by the edge length h. The co-volume averaged vorticity will involve ¢ at 
the cell center and ¢ at neighboring vertices. The resulting matrix is assembled 
into banded form of reduced matrix sparseness by opportunely reordering the e j  
variables. A direct method based on a generalized Thomas algorithm is used for the 
matrix solution. 

Once this system is solved for the vorticity and velocity components, the pres- 
sure may be evaluated from a discretized form of 

Eq. (6) gives an implicit relationship for the total pressure involving only the 
triangle-edge normal velocity components and the node-centered values of vorticity. 

RESULTS A N D  D I S C U S S I O N  

Several test cases have been computed to assess the accuracy, efficiency and re- 
liability of this approach. First we considered the flow in a driven cavity at Reynolds 
number of 100 using a triangular grid formed by bisecting uniform rectangular grids 
of 16 × 16 and 48 × 48 to form 512 and 4,608 triangles, respectively. The com- 
puted vorticity distribution along the moving wall is presented in Fig. 3 and is in 
good agreement with the results of Napolitano and Walters4and those of Ghia 5 st 
al. Next a Re -- 10,000 driven cavity was computed on grids formed by bisecting 
64 × 64 and 128 × 128 rectangular grid which has been hyperbolically stretched. The 
moving-wall vorticity distribution shown in Fig. 4 agrees well with the results Of 
Ref. 5 which used a uniform 256 × 256 grid. (N.B. ,  the Re -- 10, 000 case is used as 
numerical test case. Physical steady-state solutions to the unsteady Navier-Stokes 
equations may not exist for the driven cavity at this Reynolds number). 

Calculations of t he incompressible Navier-Stokes flow over an N ACA 0012 airfoil 
at R~ = 500 and 2000 have been performed on an unstructured grids formed by 
Delaunay triangulation s containing 4096 and 9216 nodes. The 9,216 node grid is 
shown in Fig. 5. The complete grid extended 12 chord lengths in each direction. 
Surface pressure distributions are presented in Fig. 6 for the Re = 500 case and 
in Fig. 7 for the Re -- 2000 case and are compared with the results of the code 
CFL3D 7. We note that the calculations at Re -- 500 appear to be mesh-converged 
and agree with those of Re£ 7. The agreement for the R~ ---- 2000 is not as good 
and is probably due to the fact that the CFL3D calculations had a finer mesh near 
the airfoil surface. Interpolated axial velocity profiles for the R~ = 2000 case at 
locations of x / c  = 0.2 and x / c  = 0.8 are presented in Figs. 8 and 9, respectively. 
Although the agreement is relatively good, the lack of resolution of the boundary 
layer at the x / c  = 0.2 location for the 9216 node grid is evident. 

These preliminary results are encouraging and establish the feasibility of the 
co-volume technique for two dimensions. Further studies are required to evaluate 
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the efficiency of the procedure. The real test of the method will come for three- 
dimensional applications. 
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1. I n t r o d u c t i o n  

Over the last decade solutions of the Euler equations on unstructured meshes have 
become a standard procedure. The slightly increased time and storage requirements of 
the unstructured solvers are outweighed by the drastic reduction in man and machine 
power for the generation of unstructured grids as they can be generated in a mostly 
automatic fashion starting with only the boundary nodes as user input. Still, in 
order to have control over the distribution of the vertices in the mesh, additional user 
input in the form of a user generated background grid [1] or a node cloud derived from 
structured grids [2] is required by the currently known algorithms. This becomes even 
more important for grids for Navier-Stokes calculations where the mesh structure has 
to resolve very thin shear layers. 

The method presented here is based on a philosophy of truly minimal user input. 
In the case of isotropic meshes for the Euler equations minimal user input consists of 
the set of boundary nodes only. In the case of stretched meshes for Navier-Stokes cal- 
culations, the thickness of the viscous layer and the desired maximum aspect ratio are 
also needed to make the problem well-posed. However, simple qualitative information 
about the boundary surfaces will be used to strongly improve grid quality. 

Our method is a Steiner triangulation, i.e. starting from an initial triangulation, 
nodes are inserted incrementally in a frontal manner until a final grid with an appropri- 
ate node distribution is achieved. The concept is based on the Delaunay triangulation 
[3] and its construction principle to connect closest nodes is exploited for the automa- 
tion of the grid generation process. Moreover, Delaunay grids have many interesting 
properties, including the fact that a Delaunay triangulation maximizes the minimum 
angle of all possible triangulations with a given set of vertices and is in this sense the 
smoothest triangulation. An extensive documentation on Delannay methods can be 
found in [4]. 

2. B a c k g r o u n d  M e s h  

The Delaunay triangulation of all boundary nodes is computed as an initial triangula- 
tion to begin the node generation process. This triangulation provides at no extra cost 
a suitable background mesh to interpolate a local value of desired distance between 
nodes at any point. It will be assumed here that this desirable distance is a piecewise 
linear function of position, interpolated between the nodal values of a triangle in the 
background grid. The spacing h at that node is computed as the average distance to 
its two neighboring nodes on the boundary. 

As this initial mesh is a Delaunay triangulation, only closest nodes have been 
connected. In other terms, the circumcircle of each triangle does not contain any 
other vertex of the. grid. We can exploit this property to find a second set of nodes 
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at a user specified distance, say 6, to define the viscous region. In this region the 
interpolated stretching o, decays from the user defined maximum aspect ratio at the 
solid boundaries to an isotropic value used in the inviscid domain. If the radius of 
the circumcircle of a triangle with a solid boundary face is larger than 6, a node 
normal to the face at distance /~ can be introduced without any interference with 
other regions. The stretching at this node will be the isotropic value. Two layers 
interfere if the radius is smaller than 6 and the triangle in question connects different 
solid boundaries. In that case the stretching will decay only to an appropriate fraction 
of the stretching at the solid boundaries. 

i 

Figure 1: Background grid with viscous Figure 2: Close-up of the three element 
regions, aerofoil with viscous region. 

The spacing values assigned to these nodes can be interpolated on the initial 
triangulation. We take the spacing to be the smaller value of interpolated spacing h 
and the viscous scale. The viscous scale u is the length of the longest solid boundary 
face divided by the local stretching value ~r as will be seen in section 3. Note that by 
omitting the viscous modifications we obtain a background grid for meshes for Euler 
calculations. 

3. In ternal  node generat ion 

We employ frontal techniques to construct nodes from frontal edges to refine the 
existing triangulation. The process of generating and connecting interior nodes for our 
initial triangulation of the boundaries can be distinguished into three different parts: 
building wedges with the viscous scale u in the viscous regions along solid boundaries, 
building triangles with the viscous scale v in the remaining viscous regions, building 
triangles with the inviscid scale h in the rest of the domain. While building triangles 
in the viscous and inviscid regions is essentially the same process with different scales, 
the building of wedges is a fundamentally different procedure. 
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3.1 Building wedges 

Shear layers expose high gradients normal to the layer while the gradients tangential 
to the layer remain low. Refining isotropically in both directions is not affordable. In 
the framework of minimum user input, grid stretching can be aligned with attached 
boundary layers or user-specified wakes. Once the layer separates from the surface, 
solution adaptive refinement procedures have to be used to modify the grid. Similarly, 
the grid ought to be less stretched in regions where these 'boundary layer assumptions' 
don't  hold. 

An important problem of stretching in triangular meshes is the control of the 
angles in the cells. If the maximum angle approaches 180 ° , the truncation error in 
that cell becomes exceedingly high. More or less the only reliable way to avoid large 
angles while retaining high aspect ratios is to emulate structured quadrilateral grids 
in the region where the shear layer is to be expected and choose a dividing diagonal. 
Isotropic meshing should take place in the regions far from the surfaces or where the 
layers begin to develop. 

It thus seems natural to define a viscous scale u, the length of the longest solid 
boundary face divided by the local stretching value. Starting from the string of nodes 
defining the solid boundary, a string of nodes is created around each previous string 
with distance v between the nodes until the viscous regions are filled. The string 
links the nodes that an average surface normal can be calculated to displace the 
nodes by u. This will create cells with large aspect ratios where mesh spacing h is 
coarse and more isotropic cells where the user decided anyhow to have finer spacing 
like e.g. at a corner (figure 3). Isotropic meshing with nearly equilateral triangles is 
more appropriate wherever the user chose such a fine boundary discretization that v 
is larger than the length of the frontal edge. In a similar way the strings of nodes 
are split around corners in the geometry as the flow features around a corner cannot 
be assumed a priori and isotropic refinement has to be used. The effects of reduced 
stretching and reverting to isotropicity can be seen in figure 3. 

A Delaunay triangulation maximizes the minimum angle in the mesh. On the 
other hand, the solvers impose constraints on the maximum cell angle rather than 
the minimum angle. While the differences in Min-Max and Max-Min triangulations 
are minor in isotropic grids, the differences are fundamental in stretched meshes. 
Consequently, we have to apply constraints to the triangulation while introducing 
nodes in the viscous regions. As the possible connections between the different strings 
of nodes are known, the triangles that properly connect between strings can be flagged 
and exempted from retriangulation. Hence, the algorithm to build layers of wedges 
can be cast in the following steps: 

for each string of nodes 
open a new string of nodes 
for each  node in the string 

evaluate the local stretching value on the background grid 
build a new node at distance t, to the node normal to the string 
check whether that node lies within the proper viscous region 
check whether that node is properly spaced with the nodes in the grid 
if properly spaced and located 

append the new node to the new string 
introduce the node into the constrained triangulation 
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protect the newly formed wedges between strings 
fi  

ro f  
close the new string of nodes 

ro f  

The actual implementation is slightly more complicated to properly evaluate the nor- 
mal at the ends of the strings and to allow for an interruption of the string in case 
one of the checks fails or a corner is detected. 

3.2 Building triangles in the viscous regions 

Once the viscous layers have been filled with wedges, the remaining areas in the 
viscous regions around corners and edges and the rest of the computational domain 
are filled with isotropic triangles. The only difference between viscous and inviscid 
regions is the evaluation of the local length scale. In order to match the short sides 
of the wedges, the length scale for triangles in the viscous region has to be v. 

3.3 Building triangles in the inviscid region 

In contrast to Advancing Front techniques, tracking of the front is not required for the 
generation of isotropic triangles as we provide over a closed Delaunay triangulation 
at any stage of the process. A frontal edge is defined as a face shared between a 
well shaped cell with all three sides of similar length and a badly shaped cell with an 
obtuse or acute angle opposite to the shared edge. For each frontal edge a new node 
is constructed on the perpendicular bisector into the badly shaped cell such that the 
distances between the new node and the two vertices forming the edge approximate 
h, the inviscid length scale. A further check is required to make sure that the new 
node is sufficiently distant from the remaining nodes in the grid and from the other 
new nodes. Nodes that exhibit bad spacing are either merged with other nodes or 
discarded. With these new nodes in place, the Delaunay algorithm is re-run and the 
process can be repeated until all bad triangles have vanished. More details about the 
isotropic node generation process and examples can be found in [5,6]. 

The computational cost of the isotropic node generation process can be shown 
to be O(Nlog N), hence the algorithm is asymptotically optimal. For an Euler grid 
around the three element aerofoil configuration in figures 1 to 4, 2047 nodes were 
created in 27 seconds on a DEC 5000. The viscous generation runs roughly four times 
as fast, although the implementation is not yet optimal. Further improvements in 
efficiency could be achieved with the use of an efficient data structure. 

4. E x a m p l e s  

Figures 1 to 4 give the triangulation around a three element aerofoil. Figure 1 gives a 
detail of the background mesh. The thickness of the viscous layer is .1 chord lenghts. 
Note how the border of the viscous region separates the different sections. Figure 2 
gives a view of the entire aerofoil. The wedges smoothly match the isotropic triangles 
at the outer edge of the viscous region. The maximum aspect ratio of 10 is reached 
on the surface at the middle of the main aerofoil. Figure 3 gives the same detail as 
figure 1 but for the computational grid. Also the isotropic triangles constructed in 
the viscous regions match the wedges. Figure 4 gives a close up of the trailing edge 
of the main flap where the the different length scales are smoothly blended. 
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Figure 3: Detail in the region between Figure 4: Detail at the trailing edge of 
the three elements, the main flap. 

5. Conclusions 

A fully automatic grid generation algorithm has been developed that can generate 
highly stretched unstructured meshes for Navier-Stokes calculations. Regions where 
stretching takes place are defined on a background grid that is automatically derived 
from a triangulation of the boundary nodes. The use of a regular pattern of wedges in 
the viscous regions eliminates virtually all obtuse angles that deteriorate the solution 
quality. With a proper boundary discretisation the algorithm reverts smoothly to 
isotropic grid generation when complex flow features have to be resolved in regions of 
high boundary curvature. The meshes produced are smooth in the stretched and the 
isotropic region as well as ill the areas where the transition takes place. The method 
uses only minimum user input and has an asymptotically optimal cost of operations. 
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Abst rac t  

A new approach to compute external viscous flows around three-dimensional 
configurations is proposed. A prismatic grid is used where the three-dimensional 
surface is covered by triangles similar to the unstructured grid. The direction away 
from the body surface is structured so as to achieve efficient and accurate computa- 
tions for high-Reynolds number viscous flows. The prismatic grid is generated by a 
newly developed marching-type procedure in which grid spacings are controlled by 
a variational method. The capability of the method is demonstrated by applying it 
to a viscous flow computation around a complete aircraft configuration. 

1. In t roduc t ion  

Simulations of high Reynolds number viscous flows about a complete aircraft 
configuration are still far from the practical use in the aerodynamic design. One of 
the real bottlenecks is the time-consuming procedure to generate an appropriate grid 
around a complex configuration. It/ order to circumvent this bottleneck, unstruc- 
tured grid approaches have been investigated in recent years. However, flow solution 
schemes on the unstructured grid for the Navier-Stokes equations remain painfully 
inefficient when compared to the schemes on structured grid. As a result, a new 
approach that has capabilities of the easy gridding and the efficient computation of 
the 3-D Navier-Stokes equations is a crucial subject in the current CFD. 

The objective of this paper is to propose an approach to compute high-Reynolds 
number Viscous flows around three-dimensional configurations. A prismatic grid 1) 
as shown in Fig.1 is used as a hybrid approach of the structured grid and the un- 
structured grid. To use the prismatic grid has several important advantages; it is 
1) geometrically flexible for 3-D external flow problems, 2) efficient and accurate for 
viscous flow computations with the assistance of 
the structured lines in the grid, 3) easy to im- 
plement the Thin-Layer approximation and the 
Baldwin-Lomax turbulence model, and 4) easy 
to vectorize and parallel with less computer stor- 
age requirement compared to the fully-unstruc- 
tured approach. 

This paper describes the prismatic grid gen- 
eration method and the solution scheme on the 
prismatic grid. The capability of the approach 
is shown by applying it to a viscous flow compu- 
tation of a wing-fuselage-nacelle configurations. 

Fig.1 Prismatic grid 

280 



2. Prismatic  Grid Generat ion  

External flows are assumed so that a marching-type generation procedure 2) 
is developed to generate the prismatic grid. This is conceptually similar to the 
hyperbolic grid generation 3) and the Takanashi's method 4) for the structured grid. 

As shown in Fig.2, let's define the loca- 
tion of the i-th grid point on the j-th march- 
ing front by a position vector ~,j. The body 
surface is defined by ~,1, i = 1,N. Then we 
can write, 

~,j = ~,~-1 + a~,j~,~ (1) 

where Artj  is the grid spacing in the march- 
ing direction, and ~/,j is a unit vector to the 

~ h i n g  front 

0-1):th 
~ marching front 

marching direction. Therefore the problem is ~ . / ~  \ /  
how to determine the values of Arl,j and ~,j. ~ ' ~ ~ " -  body surface 
In the present procedure, they are separately 
controlled by using variational approaches so (j = 1) 
as to generate a prismatic grid around a com- 
plex geometry in an automatic manner. Fig.2 Marching fronts 

The spacings in the marching direction, Ari,j, is determined by a minimization 
procedure of the total area of the marching front under an isoperimetric constraint of 
a constant volume between two marching fronts, ~ , j - t  and ~/,j. This minimization 
of the marching surface is physically similar to the minimization of the free surface 
of the liquid by the surface tension. Thus the marching surfaces determined by this 
concept are expected to be naturally smooth. 

The unit vector ~,j is determined by two major factors. One is that the surface 
elements smoothly change their areas and shapes. The other is that the marching 
lines should be smooth and be close to the normal line to the marching front. An 
optimization problem is then formulated where a weighted average of two objective 
functions for the smooth elements and the smooth marching lines are minimized. 

3. Flow Solut ion  M e t h o d  

With an integral form, the Navier-Stokes 
equations can be written, 

0 

where Q = [p, pvl, pv2, flv3, el is the vector of con- 
served dependent variables, and F and H are the 
convective and viscous flux vectors respectively. 
The pressure is given by ; p = (7 - 1)[e - pvlv~]. 

j - !  

Fig.3 Control volume 

The numerical scheme on the prismatic grid employs a finite volume method ]) 
which is similar to the Jameson's unstructured flow solver 5). Assuming that flow 
variables are stored at mesh nodes, we consider a control volume as a union of 
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prisms surrounding each node as shown in Fig.3. By considering the flux balance, 
we obtain a following discretized form of the equations. 

F, USe+ FSo) + ":I( Z, "Se + USe)(a) 
el ] ace- i  f ace- j  ] ace-i  ] ace - j  

In this equation, V~ denotes the volume of each prismatic element, and Y~-~l, ~/a~¢-i 
and ~ ] a ~ - j  are sums of all elements, all side faces, and all upper and lower faces 
of the control volume respectively. Assuming Q in the left-hand side be constant in 
the control volume, we obtain ordinary differential equations as 

dQ 
dt 

- k ( F )  - f j ( F )  + R-~l[.fi(H) + fj(H)] + D, + Dj (4) 

where fl and fj are flux operators corresponding to those terms in Eq.(3). On 
the right-hand side, Di and Dj are the nonlinear artificial dissipative terms in the 
directions parallel and normal to the surface, respectively. 

The Thin-Layer approximation, which is effective to improve the computational 
efficiency without decreasing the accuracy, can be easily implemented by just ne- 
glecting f~(H) in Eq.(4) which is the viscous flux parallel to the body surface. The 
Baldwin-Lomax turbulence model also prefers the structured grid in the direction 
normal to the surface, thus the present formulation can easily implement the model. 

Eq.(4) is integrated in time by using a multi-stage time stepping scheme. In 
order to accelerate the convergence to steady state, spatially variable time step 
based on the local CFL condition is used. The implicit residual averaging 6) is also 
applied to the equation. The residual, R(Q),  at a mesh point is replaces by a 
weighted average of neighboring residuals. This average can be calculated implicitly 
by solving tridiagonal equations along the structured lines of the prismatic grid . 

4. R e s u l t s  

The method was applied to a wing-fuse- 

200. Fig.4 shows the surface triangular grid 
on the body. The inlets and outlets of the en- 
gine nacelles are covered by dummy surfaces, i 
In the flow field computations, inflow and out- % flow boundary conditions are specified on these 
surfaces. Total number of grid points on the 
entire surface is 4426, and the total number of 
triangular elements is 8684. Fig.4 Surface grid 

The volume grid is generated by the marching-type method described above. 
The selected marching surfaces of the volume grid are shown in Fig.5. The index L in 
the figures is the number of the marching steps counted from the surface which is L = 
1. Because of the viscous grid, the grid on the tenth front (L = 10) is very similar 
to the surface grid. However, smoothed surfaces can be observed near the junction 
corners of the wing-fuselage and the strut-wing. Since each marching surface is 
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determined by a condition which is physically similar to the minimization of the 
liquid surface by the surface tension, the concave sharp corners are smoothed at first. 
The marching front becomes a semi-sphere at the final stage. The outer boundary 
which is L = 61 for this case is located about twenty times root-chord length from 
the body surface. The total number of grid points is therefore 4426 x 61 = 269986. 

Fig.5 Selected grid surfaces of the prismatic grid 

Fig.6 shows the volume grid on its symmetrical plane. On this plane, the 
prismatic grid becomes a structured O-grid. Fig.7 shows how the prismatic cell 
structure is constructed in the severely concave region. A prismatic column departs 
from the inboard strut surface and moves between the inboard and outboard nacelles 
as shown in the figure. This prismatic cell structure continues to the outer boundary. 

Fig.6 Prismatic grid on symmetrical plane Fig.7 Prismatic cell structure 
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Fig.8 is a computed surface pressure. The Baldwin-Lomax turbulence model 
with the Thin-Layer approximation was used. The computed result captures the 
essential feature of the flow field but more grid points on the body surface will be 
required for the accurate prediction of the aerodynamic properties. 

i ii ili I i iiiiii! 
Fig.8 Surface pressure distributions; M¢~ = 0.8, c~ --- 2 °, Re = 5.0 x 106 

5. S u m m a r y  

A prismatic grid approach to compute yiscous flow fields around complex con- 
figurations has been developed. As shown in the result, the present approach is a 
practical compromise between structured grid and unstructured grid approaches for 
external viscous flow problems. 
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I. In t roduc t ion  

One of the techniques for generating unstructured grids is the advancing-front method [1-3]. 
In this approach, the local grid characteristics, such as grid spacings, are commonly controlled by 
information stored at the nodes of a secondary coarse mesh referred to as the 'background' grid. 
As the front advances into the field, the grid parameters defining the position of a new point are 
interpolated from the values stored at the nodes of the background grid cell which encloses the point. 
As an essential part of the advancing front method, background grids introduce some important grid 
generation issues. Among these are the simplicity~ accuracy, efficiency, and flexibility of background 
grids. 

Typically, a background grid consists of unstructured triangular or tetrahedral cells which en- 
close the entire domain (Fig. la). A background grid of this type is usually generated manually. 
For complex problems, larger and more sophisticated background grids are required to provide con- 
trollable grid point distributions. The manual construction of a large background grid is difficult 
and time consuming. Furthermore, the task of prescribing spacing parameters for a large number of 
background nodes is both tedious and inaccurate. Often, several attempts are required to produce 
an acceptable distribution. A conventional background grid is inflexible to subsequent changes and 
modifications. Should a portion of a background grid be altered or if more nodes are subsequently 
desired in a section of the domain, a new background grid must be generated to supply additional 
information. Interpolation from the nodes of an unstructured background grid requires the storage 
of mesh coordinates and connectivities and a series of search and check operations to locate the 
background grid cell which encloses the interpolation point. Each operation requires computation of 
several Jacobians of the background grid cells and shape functions. 

A new type of background mesh has been proposed [4,5] which resolves many of the problems 
associated with the conventional approach. The new method is based on uniform Cartesian meshes 
and automatically distributes grid parameters in the field by solution to an elliptic partial differential 
equation. The methodology is described in 2D space in this paper. The extension to 3D is reported 
in Ref. [5]. Some sample 2D grids are presented here to demonstrate the power of the technique. 

II. S t ruc tured  Background Grids 

Since a background grid is used only for interpolation of grid characteristics and need not 
conform to the boundaries of the configuration, a simple uniform Cartesian grid can also accomplish 
the objective sufficiently (Fig. lb). Associated with a Cartesian background grid is an arbitrary 
number of user prescribed source elements at which grid parameters are defined. Two types of 
sources are used in this work: nodal and linear elements. The sources may be positioned anywhere 
in the field, preferably near the surfaces of the geometry, where a well-controlled distribution of grid 
points is desired, and at the outer boundaries. 

(a) (b) 
Fig. 1- Sample background grids. (a) unstructured, (b) structured. 

* This work was supported by NASA LaRC, Contract NAS1-18585. 
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The spatial variation of grid parameters in a field is determined by solving a Poisson equation 
on the Cartesian grid similar to computing the diffusion of heat from discrete heat sources in a 
conducting medium. The distribution is modeled by 

v 2 s  = G (1) 

along with a set of specified boundary conditions. In Eq. (1), S denotes the grid spacing parameter 
and G is a source term maintaining the spacings in the field. A discretization of Eq. (1) is obtained 
by assuming that propagation of the spacing parameter to a background grid point p from the source 
elements and the adjacent grid points is determined by a weighted averaging procedure based on the 
inverse of distance squared. The outcome is a five-point approximation of Eq. (1) on the Cartesian 
background grid with the resulting source term 

N 

G~,~ = ~ ¢.(s~, jg.  - I . )  (2) 

where (i, j )  represents a background grid node index, N is the total number of source elements in 
the field, and ¢ ,  is an intensity factor for the n ~h source element. The functions In and Jn in Eq. 
(2) are defined as 

= {Sn/r~ Jn = { 1 / r n  2 nodal source (3) 
I ,  

l inear source  

where Sn is the prescribed spacing at the nodal source n with a distance r from the location p, and 
f(l) denotes a linear variation of spacing along the line source n with a length J~n J. For linear source 
elements, parameters are prescribed at the end points of the elements. The implementation of the 
Gauss-Seidel iterative scheme with successive over-relaxation to the problem yields 

N t N 

" s "+ '  " h= ) / (  / 4+h= } :¢ , , j , , )  (4) 
n----1 n = l  

where h is the uniform background grid spacing, m is an iteration level and w is a relaxation parameter 
(0<w<2). Equation (4) is solved iteratively on the interior background grid points until convergence 
when a final smooth distribution of grid spacings is obtained. 

The spacing parameter prescribed for a source at a location represents the locM dimensional 
grid size with its effect gradually diffused as the distance from the source is increased. The intensity 
of a source, ¢ , ,  controls the extent by which the effect of the element propagates in a field. The 
higher intensity for a source, the farther the influence of the source can extend into the domain. A 
directional distribution capability is devised by limiting the source intensities to certain zones and 
directions. A directional (zonal) intensity for the source element n in relation to the interpolation 
point p is calculated as 

¢ ,  = anZ + bnlCl k (5) 

where an and bn are prescribed parameters specifying the magnitude of the domain of influence of 
the source element, k is a positive constant and/~ and ¢ control the zone and direction of the source 
propagation as defined by 

¢ = (1 - )v  . u +  71v..I (6) 

where 

v = rn/rn and 
if a ( v .  u) >_ O. 

A value of 1 for ~ indicates propagation on one side of the source in the direction of the prescribed 
unit vector u whereas -1 specifies propagation on the opposite side. For ~ equM to 0, propagation 
would be on both sides of the source. 
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During the process of advancing front, the grid spacings are interpolated from the values stored 
at the nodes of the background grid. The interpolation is performed by any conventional method 
such as hi-linear, inverse distance weighting, etc. Since a background grid is usually very coarse in 
relation to the geometry of interest, interpolation from only four nodes of a background grid cell may 
not  provide sufficient control of grid point clustering within the cell. For a better point distribution 
using a coarse background grid, the spacing parameter at a location may be interpolated from the 
four nodes of the background grid cell which encloses the interpolation point on the front while also 
taking contributions from the source elements using a weighted averaging procedure. The density 
(resolution) of a background grid depends on the size of the configuration to be gridded, the desired 
smoothness of the final grid, and whether interpolation is from both source elements and background 
grid nodes. 

HI.  Results 

Two sample grids are presented in this section to show the capability of the new method. To 
illustrate the improved grid quality obtained by the new method~ two meshes were generated around 
a NACA 0012 airfoil configuration: one generated with the conventional approach and the other with 
the new method. The triangular background grid used for the conventional mesh is shown in Fig. 
2a having 22 cells and 16 nodes. A corresponding 21 × 21 Cartesian background grid (Fig. 2b) has 
equal number of source elements to the nodes of the unstructured background grid with the same 
locations and prescribed spacings. A comparison of the generated grids (Fig. 3) clearly indicates 
the improvement obtained by the new method. The conventionally generated grid lacks the desired 
smoothness in distribution, whereas the one generated with the present method exhibits an orderly 
progression of contours resembling concentric "isotherms" around the configuration. 

The capability of the method has been further examined by generating a grid around a complex 
multi-element airfoil. To complicate the condition even further, the grid has been assumed to be 
adapted to a hypothetical complex flow field containing a shock wave. The geometry is composed 
of four airfoil sections set up in a high-lifting arrangement as shown in Fig. 4. A 81 ×81 Cartesian 
background mesh for this configuration includes 7 nodal and 2 linear source elements positioned 
near the airfoil sections (also shown in Fig. 4) and 4 nodal source elements at the outer boundary. 
All nodal elements have symmetrical intensities except the one at the trailing right-angled corner of 
the main airfoil which has a one-sided intensity propagating downward and the two elements at the 
leading edges of the third and fourth airfoil sections which propagate streamwise mostly. The linear 
element on the flap has a variable spacing and propagates mainly toward the upper surface of the 
airfoil. Figure 5 shows the generated grid. The grid distribution is smooth and efficiently resolves 
all the details of the configuration and the flow field. This example demonstrates the high degree 
of the mesh flexibility and distribution control that can be achieved with the present method. For 
example, note the miniature grid refinement at the presumed shock location near the nose of the 
main airfoil in Fig. 5c as compared to the overall size of the domain in Fig. 5a. The refinement 
has been made by addition of a small linear source element with a weak symmetrical intensity. 
Also note that the effect of the source element at the trailing corner has been confined only to the 
lower surface in Fig. 5d without influencing the grid resolution on the upper surface of the thin tail 
section. A reproduction of a grid such as this using the conventional method would require a complex 
unstructured background grid with many triangular cells resolving the desired grid clustering around 
the individual components. 

The method has also been extended and applied to 3D problems [5]. Due to page limitation, 
3D results are not included in this paper. 

IV. Concluding Remarks 

A new method for distribution of grid points has been proposed to improve the generation of 
unstructured grids by the Advancing Yront technique. The method is based on Cartesian meshes and 
solution to an elliptic partial differential equation. Due to simplicity and flexibility of the approach, 
many of the problems associated with the conventional method are resolved. The construction of 
new background grids is, for the most part, automatic and requires minimal user interaction. Unlike 
the conventional method, the new technique distributes spacing parameters among the nodes of a 
background grid in a systematic manner. The smoothness of a resulting grid is guaranteed by solution 
of the governing elliptic equation. The new background grids are more flexible to modifications due 
to the arbitrariness of locations and directional control capability of the source elements which make 
them suitable for adaptive grid refinement/de-refinement. Interpolation from a uniform Cartesian 
grid is convenient as no grid connectivity or additional information regarding neighboring cells are 
required, and no search and check operations are involved for locating interpolation points. In 
general, the new approach is simple but powerful which relies on a rigorous mathematical basis. The 
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full benefit of the method is realized for generation of 3D grids where the complexity of conventional 
tetrahedral background grids becomes excessive. 
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Figure 2 - Background grids for a NACA 0012 airfoil: (a) unstructured, (b) structured. 

Figure 3 - Unstructured grids around a NACA 0012 airfoil: (a) old method, (b) new method. 
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nodal  source 

linear source 

Figure 4 - A 4-element airfoil configuration with prescribed nodal  and linear source elements.  

(a) (b) 

(c) (d) 
Figure 5 - A tr iangular  grid around a mul t i -e lement  airfoil configuration. 
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1. The Space Discretization 

Figure 1 shows part of an unstructured triangular grid. The vertex-centred finite 
volume method is used. Around every node a controle volume is constructed by con- 
necting centres in the cells surrounding the node. We take the circumcentre as centre 
for the triangles with no obtuse angle. For the triangles with an obtuse angle~ the 
circumcentre lies outside the triangle. To correct this, the centre is then taken as the 
midpoint of the edge opposite to the obtuse angle. To close the control volumes on 
the boundary, the midpoints of the boundary edges are chosen as vertices of the con- 
trol volumes. With the choice of the centre~ used here~ the control volumes coincide 
with the Voronoi regions, except where obtuse angles occur. The faces of the control 
volume are as much as possible perpendicular to the cell edges. This improves the 
accuracy of the flux definition. 

/ 

Fig. 1. Vertex-centred discretiz~tion. 

To define the flux through a side of a control volume, use is made of the flux- 
difference splitting principle. For the side ab of the control volume of node i and node 
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j, Fig. 1, the upwind flux for use in the control volume around node i is defined by 

F~,j = F~ + A~i z ~ , j  z~8~,~ + S.O. (1) 

F~ is the flux calculated with the flow variables in nodes i. AUi,j stands for the 
difference of the vector of conserved variables. Asi,i is the length of the side ab. A~j 
is the negative part of the discrete Jacobian. To construct the discrete Jacobian, we use 
here the polynomial flux-difference splitting. This splitting technique was introduced 
by the second author [1]. Full details of this splitting are given in [2, 3]. The technique 
is of Roe-type, but is not identical to the splitting formulated by Roe [4]. The precise 
splitting used is not  really relevant for the method we describe here. 

The way of writing the flux in form (1) shows the incoming wave components. 
S.O. denotes the second order correction to the flux. This correction is constructed 
by the flux-extrapolation technique of Chakravarthy and Osher [5]. For details and 
examples, illustrating the quality of this second order formulation on structured grids, 
the reader is referred to [2, 3, 6]. To define the second order correction, points il and 
j l  in Fig. 1 are used. 

The example to follow is flow around an airfoil. Due to the use of the unstructured 
grid, we can afford to choose the far-field boundary very far away from the airfoil. 
In the example, the far-field boundary is a square with sides 100 chord lengths away 
from the airfoil. As a consequence the upper and lower parts of this boundary can 
be treated as solid walls while the left and right parts can be treated as inflow and 
outflow boundaries. This converts the external flow type problem to an internal flow 
type problem. For inflow and outflow boundaries, the classic extrapolation procedures 
are used. At solid boundaries, impermiability is imposed by setting the convective part 
of the flux equal to zero. 

Fig. 2. Complete triangulation around an airfoil with a square far-field boundary 100 chords 
away from the airfoil, and detail of grid around the airfoil (first grid). 

For a point i on a solid boundary, the flux expression (1) refers to a ficticious 
point j outside the domain. A physical flux expression can be recovered by taking 
the values of the variables in the ficticious node j equal to the wlues in the node i. 
So AUi j  and S.O. vanish. The matrix A~j in (1) is then calculated with the values 
of the variables in the node i. The impermiability is introduced in the term Fi. As 
will be discussed in the next section, the matrix A~, i at a solid boundary plays an 
important role in the relaxation method, although it is multiplied with a zero term. 
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2.  T h e  M u l t i g r i d  R e l a x a t i o n  M e t h o d  

It  is not simple to use a succesive relaxation method on an unstructured grid, since this 
requires the construction of paths through the grid. A much more natural  method is a 
simultaneous method. A simultaneous method, like the Jacobi relaxation, also has the 
further advantage of being easily vectorizablc and parallclizable. The only drawback 
is that  Jacobi relaxation, at least i n i t s  basic form, is not really effective. To repair 
this, we suggest to bring in multistage into the Jacobi method in the same way as 
multistage is used for time stepping methods and to use the optimization results with 
respect to smoothing known for time stepping schemes. This suggestion is not really 
new. It  was first made by Morano et al. [7], but not worked out in detail. A more 
detailed analysis on the possible multigrid performance was made recently by the 
authors [8]. 

We choose here a priori the defect correction multigrid procedure as was used in 
[2,3,6]. This means that  the second order part  of the flux, S.O. in.(1), is updated 
only on the finest grid and is frozen on all other grids, of course transferred by the 
usual coarse grid transfer operators. 

The Jacobi-relaxation applied to the first order fluxbalance in an interior node 
reads 

j ~,~ = 0. (2) 
J 

The matrices A~,j are on the relaxation level n. Using increments 6Ui = U~ +I - U~, 
this gives 

( -  ~ A~iZ~s~,j) 6U~ + ~ A~,~(U'~ - U,)As~,j = J (3) 

The 4x4 matr ix  coefficient of &U~ in (3) is non-singular. The difference between (single 
stage) Jacobi relaxation (3) and single stage time stepping is seen in the matr ix  
coefficient of the vector of increments 5Ui. In the time stepping method,  the coefficient 
is a diagonal matrix. In the Jacobi method, the matr ix  is composed of parts  of the 
fiux-Jacobians associated to the different faces of the control vohime. The collected 
parts correspond to waves incoming to the control volume. In the time stepping, the 
incoming waves contribute to the increment of the flow variables all with the same 
weight factor. In the Jacobi relaxation the weight factors are proportional to the wave 
speeds. As a consequence, Jacobi relaxation can be seen as a t ime stepping in which 
all incoming wave components are scaled to have the same effective speed. So, as to 
speak, they all have the same CFL-number. 

For a node on a solid boundary, an expression similar to (3) is obtained provided 
that  for a face on the boundary the difference in the first order flux-difference part  
is introduced as U~' - U~ '+x, similar to the term U~ - U~ '+~ which is used for a flux 
on an interior face. So, in order to avoid a singular matrix coefficient of the vector of 
increments in (3), this special t reatment at boundaries is necessary. 

To bring in multistage is now very simple. We use here a three-stage method with 
the parameters  optimized for smoothing, according to Van Leer et al. [9]. The param-  
eters are a l  = 0.1481; a2 = 0.40; a3 = 1.0; CFL = 1.5. Equation (3) corresponds to 
an equation with CFL = 1. 
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3. T h e  M e s h  G e n e r a t i o n  

The technique used here is the well known Delaunay triangulation algorithm formu- 
lated by Bowyer [10]. Compared with other grid generation techniques, this algorithm 
allows a strategy for placing points which is independent of the mechanism to con- 
nect the points. The algorithm iteratively generates a grid, by bringing point after 
point into the grid. Every time, a small portion of the grid is deleted and reconnected 
to include the new point. This feature of the algorithm leads to easy grid adaption 
through refinement. The domain is discretized with a mesh generator which is able 
to handle non-convex geometries. To generate the grid, a description of the domain 
boundary has to be given. Then points  are introduced on the boundaries, based on 
local curvature and local grid spacing information. With these points a preliminary 
grid is constructed, conform with the boundary. Then, criteria based on area and 
aspect ratio of the triangles are used to refine this mesh. This leads to the first grid. 
Then two more refined grids are constructed using the same basic grid generator by 
doubling the number of points on the boundary. These three grids are used in a FAS- 
multigrid method starting on the coarsest grid. The V-cycle is used. The restriction 
is based on area weighting. As soon as the residual drops below a threshold value, an 
adaption cycle is started. Using the same procedure as for the other grids, criteria are 
used to refine the mesh. Instead of being based on mesh properties they are now based 
on flow properties like pressure and entropy differences. In this way, shock regions, 
stagnation regions and slip regions axe captured accurately. Each newly generated 
mesh is incorporated into the multigrid procedure. 

4. R e s u l t s  

Fig. 3. Part of the final grid and the resulting iso-Mach lines per 0.05. 

The foregoing procedure was applied to a flow over a NACA-0012 airfoiI at an 
angle of attack of 1.25 degrees and Mach number 0.80. Three flow adapted grids were 
generated. The number of points in the three initial grids are : 464, 1420, 2105, and 
in the flow adapted grids : 3423, 6913, 9089. Figure 3 shows the result. 
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Figure 4 shows the convergence behaviour. The residual used in the figure is defined 
as the maximum of the scaled residuals of all equations in all points. 

g. 

-4" 
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0 2 ~ ~ ~ 1"0 12 

Fig. 4. Convergence behaviour for the second order defect correction scheme (TVD minmod 
limiter) on the NACA-0012 test Case, using three-stage Jacobi. Logarithm of the residual as 
function of work equivalent to 100O basic relaxation stages on the finest mesh in the local 
sequence. 

We have showed that  the combination of an adaptive unstructured grid generation 
technique and the multistage Jacobi relaxation method results in an efficient multigrid 
technique for unstructured grid applications. By the use of suitable refinement criteria 
shock regions, stagnation regions and slip regions can be well captured. 
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1. I N T R O D U C T I O N  

An initial mesh point distribution within the domain is based on the point distri- 
bution on the boundary, and therefore, mesh points will not reflect features which 
occur in the flowfield, such as, shock waves and boundary layers. Once a fiowfield 
solution has been produced, it becomes possible to adapt the mesh and generate a 
mesh which reflects the flow conditions more appropriately. Three different adap- 
tive h-refinement strategies: mesh point enrichment, mesh movement and their 
combination are presented and applied to two-dimensional multiblock meshes. The 
multiblock mesh generation methods are commonly used in aircraft industry to 
model complex geometries, however, the proposed techniques are readily applicable 
also to unstructured and hybrid types of meshes [1] 

Steady state solutions for inviscid and viscous laminar flows are obtained by 
the finite volume method, based on the Jameson Runge-Kutta scheme [2,3]. Some 
applications for turbulent flows using the Baldwin-Lomax turbulence model have 
also been investigated. Two versions of the finite volume discretization in space, 
cell vertex and cell centre, are available. 

Initial computational grids are obtained using a multiblock mesh generator 
[4,5]. This approach represents a compromise between a globally structured mesh 
and a locally connected unstructured mesh. Smooth meshes for complex geometries, 
with good orthogonality control near the boundaries, can be generated in this way. 

2. A D A P T I V I T Y  T E C H N I Q U E S  

To simulate any real features of a flow, within the capacity of existing comput- 
ers, the application of adaptivity is essential. Different adaptivity strategies have 
been developed. They can be summarized as those based on mesh enrichment, 
mesh movement, mesh regeneration, p-refinement and their combination (see for 
example [6,7,8,9]). In this paper mesh enrichment, mesh movement and their com- 
bination are considered. The mesh enrichment technique, where an existing mesh 
is locally subdivided into smaller cells, has the ability to accurately model flow 
features. However, its application poses some difficulties. The first problem lies 
in the introduction of 'hanging nodes' i.e. nodes which are not fully connected to 
surrounding points in the mesh. This has been successfully overcome within the 
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solution procedure [10]. Secondly, the mesh enrichment technique becomes compu- 
tationally expensive with an increasing number of points. In some cases this cost 
can be reduced by using a derefinement. On the other hand, the mesh movement 
technique can be performed in a very simple and efficient manner. However, it 
is well known that  the application of such a strategy can result in the adapted 
mesh having very skewed cells, and special t reatments  are required to avoid this. 
Additionally, if the number of points in the initial mesh is too small, the adapted 
meshes fail to capture flow features effectively. This problem can be particularly 
severe in viscous boundary layers. Finally, to avoid these problems and to maintain 
the benefits of the two adaptive strategies, they have been combined. 

Mesh enrichment 

The automatic procedure for cell subdivision within the quadtree data  struc- 
ture is based on the gradient of some variable. For inviscid flows the pressure has 
been used, whilst for viscous flows, in the presented numerical examples, the Mach 
number has been applied. However, any other flow parameter  or a measure of local 
error can be chosen. Other possibilities, such as the error estimation based on the 
Richardson extrapolation, have also been investigated by the authors. 

The choice of the type of subdivision is dictated by the flow feature which is 
to be detected. Thus, directionaly bisected cells are typically used in the boundary 
layer and for capturing grid aligned shock waves. To model multidimensional flow 
features cells are subdivided into four. 

Mesh movement  

A node movement technique has been devised that  is very simple to implement 
into flow codes, and is applicable to all mesh types. The position of the node 0, 
r~ +1, at relaxation level n + 1, where r = (x, y), is altered according to 

C o(r? - 

= r o + (1) 
C,o 

where C~0 is the adaptive weight function between nodes i and 0, while w is the 
relaxation parameter.  The summation is performed over all M edges connecting 
point 0 to i. As applied in the mesh enrichment, the weight function Ci0 has been 
taken as a measure of pressure for inviscid flows, and Mach number for viscous 
flOWS. 
Combined mesh enrichment and mesh movement  

Finally, to avoid the disadvantages of the two adaptive methods and to main- 
tain their merits, they have been combined. They are implemented at regular 
intervals within the flow simulation. The mesh movement should be used to avoid 
an uneconomical number of points being introduced into the computat ional  mesh, 
while the mesh enrichment (together with the deref inement)must  ensure sufficient 
mesh point resolution. In addition, if in a cell the mesh movement technique results 
in an unacceptable measure of skewness, the cell should be subdivided. 

3. N U M E R I C A L  E X A M P L E S  

Fig.(1) shows the Williams two component configuration - initial and embedded 
meshes. The solution has been obtained for the viscous laminar flow of Moo = 0.15; 
Re = 5000 and zero incidence. The typical velocity profiles at 1/3 and 2/3 of the 
chord on the upper surfaces of both aerofoils are given. It can be observed, that  
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there is little change in velocity profiles computed  for the main component ,  obtained 
on the initial and enriched grid, but  a significant improvement  can be noticed for 
the slat. 

The viscous laminar  flow at Mach number  M ~  = 0.5, Reynolds number  R e  = 

5000 and zero incidence has been simulated around a NACA0012 aerofoil. A very 
coarse grid, suitable for the solution of the Euler equations, has been used as a basic 
grid, which has been adapted  using three diferent techniques, mesh enrichment 4 
levels, mesh movement  and their combination. The  resulting computa t ional  grids 
together  with the comparison of velocity profiles at 1/3 of the chord, for different 
levels of embedding and different techniques are provided in Fig.(2) 

The  subcritical turbulent  flow at freestream Mach number  M¢~ = 0 .5 ,Re = 
2890000 and zero incidence has been computed  on an embedded mesh. The velocity 
profiles at 1/3 chord are compared  in Fig.(3) with results obtained in experiment  
[11]. 
4. C O N C L U S I O N S  

In this paper  three different adapt ivi ty  techniques have been investigated on the 
base of s t ructured meshes. All the techniques indicate the significance of using 
adapt ivi ty  for improving computat ional  results. In part icular,  the technique of 
combining point enrichment and node movement  strategies offers the best compro- 
mise. Although, the work presented here used two-dimensional s t ructured meshes, 
the techniques can be readily applied to hybrid and unst ructured meshes. Also, pre- 
liminary three-dimensional numerical results have been already obtained by coau- 
thors. 
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Fig. 1. Embedded  Navier-Stokes multiblock mesh, Mach no. contours and velocity profiles. 
(Moo = 0 .15 ,a  = 0% Re = 5000). 
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P E R F O R M A N C E  A S S E S S M E N T  OF A N  A D A P T I V E  M E S H  
R E F I N E M E N T  T E C H N I Q U E  F O R  D E T O N A T I O N  WAVES 

M. Valorani and M. Di Giacinto 
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o 

Outline of  the  Adapt ive  Mesh Refinement  Technique 

This paper is devoted to the performance assessment of an adaptive mesh refinement techni- 
que (AMP~) proposed elsewhere by the authors [1]. This technique is designed to solve efficiently 
unsteady flows having characteristic scales largely separated, such as those developing in deto- 
nation waves. The main goals of the technique are: accuracy in space and  time, small overhead, 
general applicability, multidimensionality, off-the-shelf integration (compatibility with different 
integration schemes), vector operations, parallel computing. The technique has been developed 
in the framework of hyperbolic problems, the interest of the authors being i n high speed com- 
bustion. Other approaches presenting analogies with our technique can be found in Berger and 
Colella [2], KaUinderis and Baron [3], Pervaiz and Baron [4], and Quirk [5]. 

In the proposed technique, the adaptive space discretization is obtained by tailoring the 
computational mesh to the solution by means of a set of structured, embedded grids. The 
embedding procedure is defined by partitioning each parent grid into an even number of equally 
sized offspring subgrids, Npart. Each offspring subgrid has a resolution twice as large as that of 
its parent grid. This modular and recursive procedure predefines a tree of subgrids of increasing 
resolution. The total number of subgrids, their geometry, size, location, and resolution level are 
determined once and  f o r  all at  the beginning of the calculation. 

The adaptive time discretization is based on the enforcement of a global CFL condition for 
all subgrids, which thus defines the proper integration time step of each subgrid. The integration 
starts from the finer subgrids, and ends at the coarsest ones [1]. The time step corresponding 
to the root grid is the largest one, and it is referred to as t ime  s tr ide  [4]. 

The partitioning of the discrete space domain into subgrids introduces a mixed initial- 
boundary value problem at the boundaries of each grid. However, by exploiting the hyperbolic 
properties of the equations, the mixed initial-boundary value problem is converted into a purely 
initial value problem by adding buffer zones at the sides of each subgrid in order to enforce the 
interface conditions among adjacent subgrids. Each grid can thus be integrated "independently" 
from the others. 

The process of refinement and derefinement which adapt the computational mesh is auto- 
maticaUy driven by a criterium defined on the most significant flow variables [6]. 

The a-priori definition of subgrids drastically reduces the number of operations related to the 
post-processing of the information provided by the refinement criterium, thereby reducing the 
overhead and the complemty of the code. In fact, the refinement criterium "simply" activates 
or deactivates the integration over predefined grids. The modular, recursive space adaptation 
allows to perform a new spatial adaptation at all time strides, at low cost, thus achieving tighter 
space-time mesh adaptation. 

On the other hand, the recursive property of the refinement procedure fixes an upper limit 
to the number of refinement levels, l,~ax, according to the relation lm~x = int[(log2Nroo, - 

l o g 2 N p ~ t ) / ( l o g 2 N p ~ ,  - 1)], where N~oo, is the number of cells of the root grid. 
The use of structured grids and the constraint of increasing the resolution by consecutive 

halvings only, minimize the generation of perturbations due to interpolations. 

T he  test cases 

The performance of the AMtt technique is analyzed on a classical problem of detonation 
theory: the initiation of detonation after a shock-wall reflection. This problem was considered 
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by the authors in previous works to validate the reactive Euier solver both on uniform [7] and 
adapted meshes [6]. 

A left-running shock, whose shock Mach number is 3.5, travels into an initially quiescent 
gas mixture, whose molar composition is 2H2 + 02 + 3.76N2, contained in a shock tube closed 
at its left end. The pressure, temperature and flow speed used for nondimensionalization are 
those behind the shock, namely: p = 0.41 arm, T = 879 K and V = 591.1 m/~ .  The reference 
time r,  set as r = 20/to, is chosen on the basis of the ignition delay time of the combustible 
mixture. Therefore the reference length L turns out to be L = V v  = 11.8 ram. Simulations are 
carried out on a nondimensional length of 4 (l = 47.2 ram, test # 1), and 1.25 (l = 14.75 m m ,  

test # 2). 

T E S T  # 1 Nroo* [rna* Neq 
AMK-Np. r ,  = 4 256 5 8192 
TEST # 2 
UNIF. GRID 512 0 512 
AMR-Nvar= = 16 256 1 512 
AMR-Nj,=~t = 8 128 2 512 
AMR-Nwr= = 4 64 3 512 

Table 1. Parameter selection for the AMR technique 

Under these conditions, the thickness of the detonation wave is approximately 0.75 m m  
wide, whereas the spatial extent over which the simulation is carried out in test # 1 is 3.2 times 
larger than in test # 2. The ratio w of the detonation thickness Lc over the domain length L.f 
measures the relative magnitude of the two main characteristic scales in the phenomenon. It 
thus provides a measure of the stiffness of the problem, since w is the inverse of the DamkSlher 
number (Da = r l / v c  = L I l L e  = 1/w).  

Test # 1 requires a very fine resolution in a narrow region which rapidly moves. It thus 
constitutes a typical example for which the adoption of an AMR strategy becomes highly effective 
and maybe indispensable. The ratio w scales as the domain length and thus test # 1 is 3.2 times 
stiffer than test # 2. The AMR technique can satisfy this demand with Nroot = 256 and 
Nwr~ = 4. With 5 levels of refinements allowed, the resolution at the finest level equals that of 
a uniform grid of Neq = 8192 intervals. 

Test # 2 is a far less demanding case obtained by halting the calculation before the flow 
evolution reaches the stage of severest resolution requirement, i.e. before the first hot spot 
ignition. This test allows an inexpensive comparison of the performance of adapted versus 
uniform grids. All different parameter combinations used in test # 2 (Table 1) provide, at their 
finest level the resolution of a uniform grid with N~q = 512 intervals. 

Per formance  eva lua t ion  

The overall behaviour of the technique is illustrated with the help of the results of test # 1 
and test # 2. Results of test # 2 are compared on the basis of accuracy, computational work, 
CPU time requirements, and storage memory. The UNIX subrout ine gprofprovided the detailed 
time consumption of each segment of the code. 

Overall behaviour. A multivariable refinement criterium [6] adapts the resolution to waves of 
different physical nature, such as the gasdynamic compressions and expansions, or the chemical 
waves which characterize the dynamics in test # 1 and test # 2. The ability to adapt the 
mesh to the flow features is especially highlighted by the results of test # 1 (fig. la  and lb). 
Fig. la  demonstrates how close can the mesh at the finest level of resolution follow the main flow 
features, although the recursive rule of partitioning does not explicitly incorporates any global 
pattern recognition strategy [2]. 
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Fig.la. Contour lines of refinement levels. Fig.lb. Contour lines of temperature. 

Results of test # 2 show that the AMR performance can be adjusted to the nature of the 
flow by a proper choice of the pair (NToot, Nvart), which controls the recursive refinement: a 
small value of partitions (Nvart = 4) with a relatively coarse root grid (Nroot = 64) provides 
many levels of resolution to deal with flows with only a few strong singularities; a larger value 
(Nv,,rt = 16) with a finer root grid (Nroot = 256) provides fewer levels of resolution to deal with 
flows with a more distributed need of resolution. In this way an optimal choice can be achieved. 

Accuracy. A typical snapshot of the structure of the overdriveu detonation trailing the leading 
shock is shown in fig. 2. In this figure, results obtained with the combinations of Nroet and 
Nwrt defined in Table 1 for test # 2 are compared with that of a uniform grid. The comparison 
points out that the states a~head and behind the reaction zone are essentially the same for all 
combinations of meshes, but the path connecting them shows a weak dependence on the mesh 
history. The departure from the reference solution - assumed as that provided by the uniform 
grid with 512 intervals - enlarges as the number of refinement levels increases. This confirms 
that the reduction of computational work allowed by a large number of resolution levels is 
counterbalanced by a slight loss of accuracy. 

Comparison of different AMR 

= N~,,t = 16 

Np,,t = 4 Reaction zone 

E N =8  
uniform grid Leading 

shock 
o / 

, Overtaking shock%-T---~, ~ 

Fig. 2. Comparison amoug adapted and uniform meshes at t = 0.165 x 50/~s = 8.25/Js. 

Work and CPU time. The total CPU time (CPUto=) absorbed by the calculation is provided by 
the gprof routine. 

For a uniform grid the total work can be defined as W,,niI = N~ X Nt x NI, where Ne is 
the number of cells (or nodes) of the mesh, N~ is the number of integration time step, and Nt 
is the number of levels of the scheme (two for a predictor correcter scheme). For an adapted 
mesh, the total work should include the operations related to the AMR routines (activation and 
deactivation of subgrids, data transfer among parent and offspring grids, etc.). However, it is 
conventionally defined a s  WAMR -- . . . .  Nl ~'-~k=l[Y~4=ln°g Ne.i X Nt,i]k, where at8 is the total number of 
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time strides, nsg is the number of active subgrids in a time stride, N¢,i the number of cells of 
each subgrid, Nt,i the number of substeps in a time stride for each subgrid. 

The largest total work and CPU time saving (95.89 % and 95.73 % respectively) are obtained 
in test # 1 by setting Nroot = 256 and Npart = 4 (Table 2). Because of the high degree of 
stiffness (w = 62.5) of test # 1, the total CPU time drops from 266.9 hours to 11.4, i.e. a factor 
of about 23 times smaller. The order of magnitude of this saving is well worth the complexities 
added by the AMR technique and the slight reduction of accuracy ascertained in the previous 
paragraph. 

The savings are smaller for the less stiff case (w = 19.6, test # 2). However, the aim of this 
test was mainly to demonstrate how the saving increase depends on the number of refinement 
levels (Table 2). 

TEST # 1 Nroot l , ~  nt, Work Work CPUtot (*) CPUto~ 
w = 62.5 [work u.] % saved [h] % saved 
UNIF. GRID 8192 0 9600 157,286,400 0 266.9 0 
AMR-Npa. t  ---- 4 256 5 300 6,471,082 95.89 11.4 95.73 

TEST # 2 N,.~,t l,,,,,= nt, Work Work CPUtot (**) CPUtot 
w = 19.6 [work u.] % saved [s] % saved 
UNIF. GRID 512 0 320 328,320 0 3,898.4 0 
AMR-Np~,.t = 16 256 1 160 109,312 66.71 1,306.7 66.49 
AMR-Np~rt = 8 128 2 80 53,682 83.65 654.8 83.20 
AMR-Npart = 4 64 3 40 43,539 86.74 530.9 86.38 

Compilation performed with: (*) optimization on, or (**) optimization off. 

Table 2. Work and CPU time savings. 

The gprof routine allows to find the CPU time absorbed by each segment of the code, 
and thus, to split the quota absorbed by the basic Euler solver (CPUEs)  and that by the 
AMI% routines (CPUAMR). Results of such analysis are reported in Table 3. The percent 
CPU time is referred to the corresponding total CPU reported in Table 2, i.e. %CPU = 
IO0(CPU(.) - CPUtot)/CPUtot. The specific CPU time is referred to the corresponding total 
work reported in Table 2, i.e. Specific C P U  = CPU(.)/W{.) Ires/unit of work]. The profiling 
analysis shows that the AMP~ overhead for all cases of test # 2 does not rise above 3.17%. This 
confirms that  not only the overall CPU savings are significant but that most of the time is spent 
by the technique in the integration of the field equations as it happens in a standard uniform 
grid. 

Reactive Euler GPUss % CPUEs Spec. CPUEs 
Solver [s] [ms/units of work] 

UNIF. GRID 3824.00 98.09 11.65 
AMR-Npart = 16 1264.49 96.76 11.57 
AMR-Npart = 8 633.42 96.73 11.80 
AMR-Np~,rt = 4 513.15 96.66 11.78 

Overhead CPUAMR % CPUaMn Spec. CPUAMR 
for AMR Is/ [ms/units of work] 

AMR-N~,,~t = 16 41.53 3.17 0.3799 
AMR-Np,,rt = 8 19.79 3.06 0.3686 
AMR-Npart = 4 16.1 3.03 0.3697 

Table 3. Specific CPU time for reactive Euler solver and AMR overhead. 

Storage. Table 4 reports the maofimum number of active nodes (active nodes) and the maxi- 
mum number of total nodes belonging to the subgrid tree (tot nodes) encountered in the whole 
calculation. 
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Once more, the largest savings are obtained with the pair (NToo,, Npart) = (256, 4) in test # 1. 
The savings increase with l,naz (test # 2 in Table 4). The storage memory may be reduced up 
to a factor of 4 with respect to that of a uniform grid (test # 1). 

The ratio active/used nodes decreases as the number of refinement levels increses. When 
Irnax increases, it tends to a typical value of 60 % (Table 4). 

The number of subgrids created by the automatic procedure increases with lm~= (Table 4) 
as well. Although the number of subgrid increases with Im~= (Table 4), the global overhead 
requirement decreases, because of the smaller work (Table 2). 

Conclus ions  and  F u t u r e  work  

The AMtt indeed provides significant savings in CPU time (up to a factor of 25) and storage 
memory (up to a factor of 4) with only minor loss of accuracy with respect to an equivalent 
uniform grid calculation. These figures are likely to become even more advantageous when the 
technique will be extended to two dimensional flows. The overhead CPU time by AMtt remains 
typically below 3% of the total. In general, the best performance is obtained for combination of 
(Nroot, Npart) providing many refinement levels. 

Future work will be devoted to: (i) the extension to two dimensional problems and shock 
capturing schemes; (it) the parallellzation of the integration procedure. 

TEST # 1 N~oot I~.,,= 

UNIF. GRID 8192 0 
AMR-Npar, = 4 256 5 

tot nodes saving active nodes saving active/tot 
% % 

8192 0 8192 0 1.000 
2050 75 1199 85.4 0.584 

max ~ average 
of grids # of grids 

1 1 
73 46 

TEST # 2 N~oot l,,... 

.... UNIF. GRID 512 0 
AMR-Np.rt = 16 256 I 
AMR-Np~rt = 8 128 2 

AMR-Np~t = 4 64 3 

tot nodes saving active nodes saving active/tot 
% % 

512 0 512 0 1.000 
409 20.1 396 23 0.968 
372 27.4 302 41.1 0.811 
360 29.7 237 53.7 0.658 

m a x #  average 
of grids #o f  grids 

1 1 
5 2 
13 6 
19 9 

Table 4. Storage savings. 
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AN EVALUATION OF TURBULENT HEAT TRANSFER 
PREDICTIONS 

D. Chaussee 

NASA Ames Research Center Moffett Field, CA 94035 USA 

INTRODUCTION 

The intent  of this work has been to invest igate  computa t iona l  
aero thermodynamic  codes that are capable of calculating the heat 
t ransfer  accurate ly  for viscous superson ic /hyperson ic  f low about  
realist ic configurat ions.  In invest igat ing these codes,  a systematic 
study of the various computational parameters and their affect on the 
heat transfer as compared to experiment  is performed.  The tools 
consist of a PNS code, a t ime-dependent , upwind code (UWIN), and a 
t ime-dependen t  f inite volume code (CNSFV).  The NASA Ames 
Parabolized Navier-Stokes (PNS) code as developed by Schiff  and 
S t e g e r l w a s  used as the mainline procedure to numerical ly simulate 
the viscous supersonic/hypersonic flow over a biconic configuration. 
The baseline turbulence model  that has been used in this project is 
the Ba ldwin-Lomax  m o d e l ( B L )  2. The boundary conditions are the 
usual viscous no slip at the wall, specified wall temperature, and a 
characteristic procedure is used for the PNS code to fit the bow shock 
wave which is the outermost boundary. Since the equations are cast 
in conservation-law form, all discontinuities within the flow domain 
are predicted accurately. For the t ime-dependent  calculations,  the 
outer most shock wave is captured as well. The various parameters 
which are invest igated consist  of: smoothing coefficients,  the wall 
temperature, the radial grid spacing at the surface of the vehicle, two 
dif ferent  ways of calculat ing the heat t ransfer  rate (Qdot),  and 
changing the Cep coefficient in the BL-turbulence model. 

COMPUTATIONAL TECHNIQUES 

The PNS code 1 uses the Beam-Warming implicit algorithm to solve the 
parabolized approximation to the Navier-Stokes equations. It is first- 
or second-order accurate in the marching direction (X) and second- 
order accurate in the spatial directions. Stability is enhanced by 
adding dissipation and smoothing to the equations. In addition, a 

parameter  (~A) is appended to the diagonal of the marching Jacobian to 
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further  improve the stability, especial ly in the areas of near 
separat ion.  

The UWIN code 3 uses a TVD-Osher upwind scheme to march in time. 
This scheme is implemented within an iterative implicit algorithm that 
permits the solution of the fully implicit, nonlinear form of the finite- 
difference equations. The solution is advanced in time using a Newton 
iterative technique. The method is second-order accurate in space and 
first-order accurate in time. 

The CNSFV code 4 employs the Pulliam-Chaussee diagonal algorithm to 
march in time. The code is multi-zonal and the Navier-Stokes 
equations are cast in a finite-volume t ime-marching form. The 
method is second-order in space and first-order in time. 

RESULTS 

The case chosen to make the critical evaluations consists of a 
hypersonic Mach number, M..= 7.95 flow, past a 10.5o/7 ° bicone at an 

angle-of-attack a = 0 o. The test Reynolds Number is 3.7 x 106 per foot. 
The model had trips placed near the nose in order to obtain turbulent 
flow. However, only the trip of .06 consistently gave turbulent flow. 
The other trips, .013, .03, gave transitional flow over the fore cone. 
The wall temperature (Twall) of 560 ° R is nominal, however in some 
cases the Twau was varied as a function of X based on experimental 
data. In addition, the constant, Cop, in the BL turbulence model was 
changed from 1.6 to 2.08 to allow for a better fit of the data. I n  most 
cases, the computational grid consisted of 45 points in the meridional 
direction and 30 points in the radial direction. 

The boundary- layer  propert ies are integrated to form integral  
thickness calculations for shear stress, skin friction coefficient, heating 
rate, heat-transfer coefficient, and the Stanton number. These values 
are based on local wall streamline conditions and are referenced to 
free-stream conditions and the adiabatic wall temperature, Ttotal. The 
normal variation of the velocity and temperature gradients are 
calculated using the quadratic fits of local temperature and velocities. 
The radial derivatives are corrected for the true normal gradient 
providing an accurate representation of the derivatives. This is the 
basis for the second order heat transfer calculations. The first order 
heat transfer calculations use a simple backward difference for the 
gradients .  

The X-variation of ~A, a stabilizing parameter in the PNS code, is 
presented in Figure 1. From this figure, it is concluded that for this 
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case this parameter  does not have a significant effect  on the 
calculation of heat transfer. It has been found by the author that a 
value of 0.1 is usually the minimum ~alue that can be used for 
computations,  in the general case. In the figure, a value of 0 
corresponds to the experiment. These results have all of the other 
changeable parameters at their optimum values. 

Figure 2 shows the variation of the Stanton number when the radial 
spacing at the surface of the body is refined. The finer the spacing at 
the surface, the better comparison between the computation and the 
best experimental results. Also, it is observed that as the radial 
spacing asympto t ica l ly  approaches  zero, the Stanton Number  
evaluations by the various codes are converging to a common curve. 

In Figs. 3 and 4, the variation of the Stanton n u m b e r  is presented 
based on the accuracy of the numerical approximations made in 
determining the Stanton number. The solid curve is the baseline 
optimum result based on the first order evaluation of the derivatives 
that are used in determining the Stanton number. In both figures, the 
results are improved, as compared to experiment, by using a second- 
order approximation in the evaluation of the Stanton number. It 
should be noted that the largest variation occurs on the fore cone. By 
using the higher approximation, a coarser spacing at the body surface 
can be used to obtain the same result as the fine spacing solution. This 
will allow for fewer grid points and a more efficient computational 
p rocedure .  

Figure 5 presents the comparison between the best experiment and 
the axial distribution of the error band that is created by the variation 
in the numerical parameters. In Figure 6, the best numerical result is 
compared with the scatter of the various wind tunnel tests that were 
conducted. It is observed that either discipline can make the others 
result look bad by how the data is presented. It should be understood 
by both sides (computation and experiment) that a variation in results 
can occur just by changing various parameters. 

In Figure 7, a heat transfer and Stanton Number comparison between 
all of the CFD code results and the experimental results are presented. 
The experimental results are deemed to be the best of the many 
experimental  results available. In all cases the heat transfer 
parameters are calculated using first order derivatives. The PNS and 
the UWIN results are for a radial spacing, DS = 0.0005 while the CNSFV 
result is for a DS=0.001. This corresponds to a Y+ = 0.5 and Y÷ = 1, 
respec t ive ly .  The Stanton Number comparisons yield a reasonable 
comparison between all of the computat ional  results and the 
experimental results. The better comparisons are of course for the 
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finer radial grid. The trend of the heat transfer comparisons is 
consistent with the radial spacing. 

SUMMARY 

All three codes showed good comparison with heat transfer as long as 
the first radial spacing was relatively fine (Y+ < 0.5). This was 
improved further by employing a second order approximation for the 
radial derivatives that are used in the prediction of the heat transfer. 
These conclusions are predicated on the rather simple circular cross- 
section of the conical body. 
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Kinetic flux-splitting schemes 
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1. I n t r o d u c t i o n  

In this contribution, we present the first results of the extension to hypersonic 
nonequilibrium flows of a numerical method initiated in [1]. This method is of finite 
volume type on totally unstructured autoadaptive meshes. The major idea is to use 
both  the kinetic origin of the Euler equations and their symmetric form (via the 
entropic variables). We get a decomposition of the flux of the polar of the entropy, 
into a convex and a concave part,  that corresponds to "incoming" and "outgoing" 
particles. The differentiation of this decomposition with respect to the entropic 
variables yields a flux-splitting scheme, formally of order 1. 

2. K i n e t i c  f lux s p l i t t i n g  

We consider the bidimensional Euler equations 

(1) 0,w + 01f l (w)  + 02f2(w) = ~(w) 

with w = (p, p u, pc), f l ,  f2 the fluxes in the x x and z 2 directions, and er(w) the 
source te~m. ~ S(~)  is a La~ e~tropy for (1), ~ (~)  = V ~ S ( ~ )  the corresponding 
entropic variables, a symmetrization function of (1) is 

(2) r.*(~, ~) = s * (~ ) (~ ,  + . ' ~ ,  + ~ )  
and the flux of the Euler equations is 

(3) wn, + f~nl  + f2n~ = V ~ . * ( ~ ,  n) .  

s*(~)  (where ~ = (~p, ~ , ,  ~o))- The underlying pressure law is p(~) = ( _ ~ , )  

We address the special class of symmetrizations 

~*(~, r,) = f,E~' (nt + v .  n,)H*(~ . K(v,  q))dvdq (4) 
j ~  

I/>0 

where H*(x) is a strictly convex function and K(v, r/) a collisional vector, typically 
of the form g(v ,  q) = (1, v, ½ [vl 2 + g(fl)), where g(fl) is an increasing positive 
function. 
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By splitting E*(~, n) into incoming and outgoing particles with respect to the 
parametric vector n we get the following decomposition 

(5) E*(cp, n) = / (nt + v .  nx)H*(~. K(v, rl))dvdr 1 
.in t T v ' n x  > 0  

+ / (nt + v .  n,)H*(9.  K(v, rl))dvdr I . 
.In t + v ' n ~  <O 

The corresponding decomposition of the flux appears as the gradient of the above 
splitting (summation holds from i = 0 to i = 2) 

(6) f i n i =  yg~,,*'+(cp, n) + 
Y 

( f i n l ) +  ( f l r t i ) -  

In this context, the Euler equations are written directly in symmetric and in kinetic 
form, and the flux-splitting is a gradient. 

3. Phys ica l  mode l s  

• The  case H*(x) = exp x. 
We point out that the most classical models emanating from Statistical Mecha- 

nics enter in this framework by taking H*(z) = exp x. The fonction E*(q0, n) plays 
in this case a similar role to the one played by the repartition function in Statistical 
Mechanics. The underlying velocity repartition function is of Maxwellian type. We 
describe now some examples. 
a. Pe r f ec t  (non po ly t rop ic )  gas. For gases with pressure law p = rpT, and 
internal specific energy e = ~(T) one can show that there exists a unique function 
g(y) such that the function E*(~, n) symmetrizes the Euler equations, [2]. However 
the knowledge of g(y) is not necessary for the decomposition formula. 

In fact one has (in the case nt = O) 

[ ' ] = + (2 T) al(z) - 

(7) (2rT) 7 

/7 Go(z) = 1/v/~ e-t 'dt ; al(z)  = 1/v/~ te-t2dt 

Differentiation of (7) with respect to q0 gives 

1 

(8) V~E*'+(V, n) = Go(Z)fJnj + (2rT)~ G,(Z)(w + ~) 

where @ = (0, O, O,p/2). 
We point out the validity aad the simplicity of formula (8) regardingless to the 

particular energy law that is considered. (8) generalizes the formula of Pullin [4] 
and of Deshpande [3]. 
b. Pe r fec t  mix tu re s  of  gases.  

The symmetrization of a perfect mixture is obtained by summation of the sym- 
metrization of each species in the mixture, J2]. This procedure is here the counterpart 
in this framework of the notion of perfect mixture in Statistical Mechanics, where 
the total pressure is the sum of the partial pressures (Dalton law). We emphasize 
that the split flux for the mixture is just the sum of the partial split fluxes. This 
gives a very natural counterpart of the physics at the numerical level. 
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c. Vibrationaly excited diatornic gases [2]. 
The classical statistical model of the harmonic oscillator can be recovered by 

taking a collisional vector of the form 

(9) g ( v , q , m )  = (1, v, ½ Ivl = + > 0, m e N .  

The entropic variable is ~ = (~a, ~n, ~ ,  9e ~ib)" The resulting conservative variables 
a r e  

w = (p, pu, pe, ps~ib) with e = ½ lul 2 +~(T) ,  

(10) ,T* 1 
~ v l b ( T v i b )  = T* with ,3  = rT* ; T v i b  = 

6 Tv ib  - -  1 ~ ° ~ e v i b  

The flux is (1-D case) 

(11) f = (pu, pu 2 + p,(pe-kp)u,pc~ibU) with p = rpT .  

The flux-splitting formula is the same as (8) with ~ -- (0, O,p/2, 0). 
• The  case H*(x) = x~_, a > 1. 

This choice of the function H*(x) is described in [2]. It enables velocity reparti- 
tion functions with finite supports. It allows flux-splitting formulae for perfect gases 
different from that with H*(x) = exp x but involving different special functions. So 
the latter are prefered, by now, for numerical purposes. 

4. Numer i ca l  scheme 
The numerical scheme being developped is of finite volume type. It reads 

(12) f0 [ V ~ * ' - ( ~ u t ' - n )  + V~*'+(~ihn'-n)] = 0 
qh 

qh is an element of the space-time grid, that can be totally unstructured, ~ u t  and 
~ n  are the piecewise constant outer and inner traces of ~h on aqh. n is the normal 
to cgqh giving orientation. If qh = wh × [tk,t k+l] and p indexes the edges of Own, 
(12) becomes 

At 
(13) W~ +1= W k area,(taJh) ~ [ VqOZarv'7 ~.,-¢ out,k+l, \ - -  * n'k+l, 

P 

On a cartesian grid, (13) appears as a first order, implicit in time, flux-splitting 
scheme. A nice property of the scheme (13) is the consistency with the entropy 
inequality. 

We can identify the numerical production of entropy on an edge A of the mesh 
by 

(14) fA[S'n,]= fAnOq ~(~h)+ fanaq ~(~h ) 
where 

x-~*,--[  i n , k q - 1  \ w , , - - ¢  o u t , k q - 1  \ ¢-7 ~ * , - - /  o u t , k q - 1  \ /  i n , k - b l  o u t , k - H \  
~(~oh) = ,, t~Oh ,n)--~, tq% ,_nj--v¢~, ~h ,-n)(~h -~°h J" 

The right-hand-side of (14) is negative by the concavity of E*'- .  
In fact the explicit version of (13) still preserves this property under a cfl-like 

condition. Moreover the positivity of the density and of the pressure are proven to 
be preserved under conditions of the sasne type, [5]. 
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5. Numer ica l  results 
We present results corresponding to an hypersonic chemically reactive flow at 

incidence 30 ° over a double-ellipse. The conditions at infinity are Moo = 9.15, 
Too = 260°K, poo = 1, 34410-3 kgm -3. 5 species (N2,02,NO, N,O) are taken in 
account. The chemical source term is the Arrhenius one with the Gardiner mo- 
del (3 reactions). The time integration is implicit for the source, explicit for the 
hydrodynamic. 

Moreover a fully automatized refining procedure of the mesh, that can be totally 
unstructured has been developped. The refining criterion, that is used, is the local 
numerical  entropy production (§ 4). 

The mesh refining procedure works very well on supersonic or hypersonic flows. 
Moreover the extension to other reactive models including vibrational noneqnili- 
brium is in progress, based on § 3.c. 
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sions. We thank also P. Klotz for her very efficient implementation of the refining 
procedure and her graphic package. 
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Figl: Coarse mesh 
410 vertices, 1094edges~ 685 elements 

Fig  3: Iso-Mach lines 
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Fig 7: Iso-y Iv° lines 
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Fig 2: Mesh (after 4 refinement steps) 
6012 vertices, 14616 edges~ 8605 elements 

M~ = 9.16, reactive case 

Fi  8 4: Iso-Mach lines 
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1. I N T R O D U C T I O N  

The purposes of this paper are first to simulate supersonic mixing layers including 
shocks by using a fourth-order high-resolution scheme developed by the authors[i], and 
to preliminarily understand the physical phenomena for the development of hypersonic 
air-breathing engines. 

With regard to the numerical approaches for simulating mixing layers, a number of 
numerical methods have been already reported. But, most of them are for rather low 
speed mixing layers and can not simulate any flows having shock waves. For simulating 
high speed compressible mixing layers, we must fundamentally use something like a 
shock capturing scheme. And in this case, some investigations using TVD scheme 
have also been reported[2]-[4]. But, they use the difference scheme with second-order 
accuracy in space. Therefore, the resolvability of slip surface is still poor, though 
reasonable shock patterns are obtained. On the other hand, the present method uses 
a new shock capturing scheme having fourth-order accuracy in space and second-order 
accuracy in time. 

The present scheme is based on the third-order accurate MUSCL upwind-scheme, 
and is modified by compact additional terms with a parameter ¢ for improving the 
accuracy. The scheme is usuallly fourth-order, but becomes fifth-order for q~ = 1/5. 
And a fourth-order compact MUSCL TVD scheme is attained for ¢ = 1/3. This 
scheme can be easily applied to any existing numerical solvers based on the third- 
order upwind scheme[5], can capture the slip surface clearly, and is simpler than 
so-called ENO scheme[@ 

2. F U N D A M E N T A L  EQUATIONS 

In this study, we use the three-dimensional compressible Navier-Stokes equations 

0q 
oq/o  + L(q) - + + = o (1) 

The equations are solved by an implicit time-marching finite-difference scheme with 
the delta-form approximate-factorization, the diagonalization and the upwinding. To 
simulate unsteady flows accurately, the sceond-order Crank-Nicholson method and 
the Newton iteration are applied to this implicit scheme[7]. 
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3 .  H I G H - R E S O L U T I O N  S C E M E S  

The fourth(fifth)-order compact MUSCL TVD scheme can be written as 

Fi+l[~ + L F -  = s (q~+l/~) + (q~+l/~) 

w h e r e  

1 ~ 1 . ~ 
q L  = q~ + ~minmod[Dqi_~l~, bDqi+~/~] + -~mmmod[Dqi+~l~, bDqi-~l~] 

1 ~ 1 ~ - 
qn = q;+x - -~minmod[Dq!+3/2, bbq;+~/~] - -~ufinmod[Dq~+~/2, bDqi+3/~] 

I _ 

Dqi-1/2 = Dqi-1/2 - 4 C DS qi-l/2 

1 + CD3qi+l[ 2 Dq~+l/2 = Dq~+~/2- 8 

! -  
Dq~+s/2 = Dq~+a/2 - 4 C D3q~+s/~ 

Dq~+~/~ = q;+~ - q~ , f)3qi+l]2 = Dq~_a/~ - 2Dq~+~/2 + Dqi+~/~ 

(2) 

(~) 

(4) 

Dq~-ll~ = minmod(  Dqi_l/2, bl Dqi+l/2, bl Dq~+31~) 

Dq~+ l /2 = minmod(  Dqi+ l /2, bl Dq~+ 31~, bl Dq~-sl2) 

Dq~+ 3/2 = minmod(  Dq~+ 3/2, bl Dq~-l/2, bl Dq~+ l/2 ) 

Equation (3) is made by taking a linear combination of the fourth-order upstream- 
difference and the fourth-order central-difference. - 1  < ¢ _< 1. ¢ = - 1  and 1 
correspond to the upstream- and central-differences, respectively. If ¢ = 1/5, then 
Eq.(3) becomes fifth-order. By taking ¢ = 1/3, Eq.(4) can be written the same form 
a s  

Dqk+ll2 = D%+H2 - 1Ds  %+1/~ , (k = - 1 ,  O, 1) (5) 

Therefore, the existing code using the third-order MUSCL TVD scheme can be easily 
improved to the fourth-order by using Dq of Eq.(5) 

4 .  N U M E R I C A L  R E S U L T S  

In this paper, we perform direct numerica] simulations of the time-developing 
subsonic and supersonic mixing layers (Figure 1). The initial mean velocities ~, 0, O 
a r e  

= l t a n h ( y )  , 0 = 0 .  , O = 0 .  (6) 

~nd the perturbations used here are 

+ ~ { ¢ ' , O ) c o s ( 0 . s ~ )  - ¢~ (v ) s in (0 . s~ ) )  

v' = e~{¢,(y)asin(ax) + ¢~(y)acos(ax)} (7) 

+ e~{¢,.(y)O.5o~sin(O.5o~x) + ¢~(y)0.bc~cos(0.bax)} 

+ ~ s { ¢ , ( v ) e ~ s i n ( e ~ )  + ¢ ~ 0 ) 2 , c o s ( 2 ~ ) }  
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where a is wave number(= 0.4446). G(Y) and ¢i(y) are the most unstable eigenfunc- 
tions for this wave number[8]. The amplitudes of oscillations cl, e2 and e3 are 0.219, 
0.110 and 0.003, respectively. The computational domain is 0 ~ 47r/cx in x direction 
-27c/cx ,,~ 27c/cx in y direction and 0 ~ 2w/a in z direction (Figure 1). The relative 
Mach number MT is defined as the differnce between two streams. 

Slip Wall Boundary 

Figure 1 Time-developing mixing layer 

/ / / / 

t=35 / t=35 t=35 

/ 

t=70 t=70 / t=70 

t=140 t=105 

/ 
I 

t=1o5 

(a) M, = 0.5 (b) MT = 1.5 (c) MT = 2.05 

Figure 2 Vorticity contours 
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We first calculate two-dimensional subsonic and supersonic mixing layers. The 
computational grid is 181 x 181 uniform grid. Figure 2 shows the calculated vorticity 
contours at (a) MT = 0.5, (b) MT = 1.5 and (c) MT = 2.05, respectively. Re = 10000. 
For Mr = 0.5 and 1.5, the perturbation leads to symmetric roll-up and pairing. 
These vortex behaviors are similar to the incompressible mixing layers[9]. But for 
M, = 2.05, kinks appear and the pairing dose not occur clearly. For M, = 1.5 
weak nomal shocks appear and for MT = 2.05, oblique shocks are observed. Figure 4 
shows a comparison of calculated vorticity contours for Mr = 1.5 by the third-order 
MUSCL TVD scheme[5] and the fourth-order MUSCL TVD scheme. It is found from 
these figures that resolution of slip surface by the present scheme is superior than the 
existing third-order scheme. 

We next calculate three-dimensional subsonic and supersonic mixing layers. Figure 
4 shows the calculated equi-vorticity surfaces of the time-developing subsonic mixing 
layer and the Mach number distribution on a vertical plane. Considerable three- 
dimensional effects can be observed. 

(a) Third-order scheme (b) Present scheme 

Figure 3 Vorticty contours 

Figure 4 3-D Equi-vorticity surface and Mach number distribution 
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5. C O N C L U S I O N S  

The direct numerical simulations of the time-developing subsonic and supersonic 
mixing layers have been presented. We can conclude that the present scheme is 
considerably excellent than the existing second- and third-order TVD schemes to 
simulate high speed flows having slip surfaces and shock waves. 
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1. O B J E C T I V E S  

This study details the derivation and application of "truly" two-dimensional 
algorithms for the simulation of radiative heat transfer in flows out of chemical 
equilibrium. The present approach removes the need for the One-Dimensional Slab 
Approximation 1, which is commonly used in order to simplify the treatment of 
the radiative heat transfer term appearing in the governing gasdynamic equations. 
Moreover, the radiative field is determined over the entire flowfield, instead of being 
limited to a small region close to the stagnation streamline. The increase in accuracy 
due to the removal of the 1D Slab approximation is important for the design of 
reentry configurations, where radiative heat transfer is the predominant form of 
heat exchange 2. 

The radiative cMculation is fully coupled with the flow solver 3, although some 
freezing techniques are implemented in order to save computer time for steady-state 
problems. Comparisons of the proposed algorithms with the slab theory and the 
simple case of an emission-dominated gas are shown for test cases in the hypersonic 
regime. 

2. M E T H O D O L O G Y  

The governing integro-differential equations for a reacting gas in radiative non- 
equilibrium, neglecting relativistic effects 1, read in generalized coordinates (~, t/) 

~(_~)0 Q + O(F-Fv)o( + O(G-Gv)oq _ Wj , (2.1) 

where Q is the vector of conserved variables; 1 ~ and (~ are the inviseid flux vectors; 
i~. and G~ are the viscous flux vectors; W is the vector of source terms; and J is the 
Jacobian of the coordinate transformation 3. The radiative heat transfer contribution 
appears explicitly only in the source term vector, in correspondence with the global 
energy equation, as the negative of the divergence of the radiant heat flux vector, 
- V  - qR. For two-dimensional problems, V • qR is given by 

o o  r ~  v~v d r  

(2.2) 
- 2 o~v oeuB~, e- fo dwd¢ du ~" d~ , 

\ d O  dO 
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where a is the Stefan-Boltzmann constant, ap  is the Planck mean absorption coeffi- 
cient, T is the temperature, a~ is the absorption coefficient at the frequency ~,, I~ is 
the specific intensity and B~ its equilibrium value, ¢ is the angle that describes the 
direction of propagation of radiation, and dr, dw are line elements along a direction 
of propagation. In the above, the line integrals are started at point 0, which is the 
point in the flowfield under consideration, and terminate at point co, at a distance 
roo, which is a boundary point. It is apparent from this form of the radiative source 
term that its value at any point in the flowfield at a given time will depend upon 
the properties of all the points that are in its "line of sight," that is, all the points 
lying in the portion of the fiowfield that is swept by straight lines (rays) emanating 
from the point under consideration and terminating either at solid boundaries or in 
the farfield. 

The discretization of the governing equations is performed by means of the 
finite-volume technique. Flux-split techniques are employed for the inviscid fluxes 4, 
and central differences are used for the viscous fluxes. The discretized equations are 
advanced in time using either an LU decomposition or an Approximate Factorization 
in the computational plane 5. 

The numerical evaluation of the radiative source terms, (2.1), involves integra- 
tion over frequency, over angle, and over length along a direction of propagation. 
This evaluation should be performed at every time step when time accuracy is of 
interest. However, for steady-state problems, the radiative source terms can be 
lagged for a few time steps. The integration over the frequency spectrum can be 
performed in its simplest form by means of the gray-gas approximation 1. More re- 
alistic approaches include the three-band and the eight-band models 6, whereby the 
mean absorption coefficient is considered constant over a band, and the integration 
reduces to a summation over the bands. Presently, preliminary results have been 
obtained for the one-band (gray-gas) model only, although the multiple band model 
is being implemented. 

The double integration over the geometric parameters (angle and length) is 
accomplished by superimposing a "radiation grid" on the discretized domain. In 
particular, for every finite volume in the calculation it is necessary to define the 
rays that will be considered for the integration over the angle, and the points along 
each ray for the integration over the length, including the boundary points in the 
farfield or at some solid wall. Specifically, given a computational cell and a direction 
of propagation, a ray is started from the cell center and continued until a boundary is 
reached. After locating the position of the boundary point at the intersection of the 
ray with the grid boundary, the points along the ray are distributed in accordance 
with the technique chosen for the line integration. The process is continued until 
all directions of propagation are exhausted, and is repeated for all volumes in the 
computational domain. 

The integration over the angle (direction of propagation) is performed by par- 
titioning the interval [0, 2~] into equally distributed subintervals. Due to the fact 
that the two limits of integration physically coincide, this procedure is tantamount 
to using a composite trapezoidal rule (or a two-point open Newton Cotes formula, 
for that matter). Several options have been implemented for the integration over the 
length, including composite trapezoidal and Simpson rules, the use of Richardson's 
extrapolation, and the implementation of a composite Gauss-Legendre formula. 
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3. R E S U L T S  

Preliminary results were obtained for a viscous flow at Mach 46.9 over a circular 
cylinder in air at an alti tude of 57.9 kin. This problem was studied by Howe 
and Viegas ~ by means a shock layer solution in equilibrium air using the 1D Slab 
approximation. It should be noted that  their methodology provides a prediction 
only of the stagnation streamline variables. The present investigation employed 
60 volumes in the circumferential direction and 90 in the radial direction. The 
"radiation grid" at every volume consisted of 36 equally spaced rays and 40 intervals 
of integration per ray. The composite two-point Gauss-Legendre formula was used 
for the numerical quadrature  along a ray, which resulted in 80 points being employed 
for the integration. A surface temperature  Tw = 1500 K was imposed as a boundary  
condition. 

Results were obtained for the truly two dimensional radiative heat transfer case, 
the 1D Slab approximation, the emission-dominated case, and a baseline case with 
no radiative heat transfer. A Van Leer-type discretization of the inviscid fluxes was 
employed. The finite-rate chemistry model for air includes five-species and seventeen 
reactions 5, and is widely used in hypersonic applications. 

In a related paper 3, a comparison of CPU time per iteration on a Cray YMP was 
performed for the reactive case with no radiation, the emission-dominated problem, 
the 1D Slab, and the full 2D algorithm. Comparing the overheads associated with 
the inclusion of a radiative model to the baseline time for a reactive calculation, it 
was possible to conclude that  the cost of running an emission-dominated model is 
negligible. On the other hand, a five to ten percent increase in CPU time is required 
for the Slab calculation. The  full 2D algorithm is more expensive, requiring between 
a twofold and a fourfold increase in CPU time. This should not be surprising, in 
light of the fact that  the evaluation of the radiative source term involves 36 rays per 
finite volume instead of two, as in the 1D Slab. 

Fig.  1 
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Fig. 1 shows a symbolic representation of the physical grid, and superimposed 
on it the "radiative" grid for a single finite volume. It may be noticed that  at the 
symmetry axis the lines of sight are specularly reflected, allowing the calculations 
to be performed with a quarter of circumference only. 

Fig. 2 depicts the temperature along the first row of volumes off of the stagna- 
tion streamline. The temperature profiles are affected by the choice of the radiative 
transfer model. In particular, absorption is re-heating the gas in the shock layer 
when compared with the emission-dominated case, but the fully two-dimensional 
algorithm provides the flowfield with some "relieving" effects which ultimately re- 
sult in lower temperatures when compared with the 1D Slab approximation. The 
peak temperature is virtually the same for the three cases. The baseline case with 
no radiation is not presented, because it would be outside of the plott~ed scale due 
to the dramatic (and unphysical) increase in temperature levels for a gas that  is 
not allowed to radiate off most of the aerothermodynamic heating associated with 
a Mach 47 flow. 
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Fig. 3 shows the component of the radiative heat flux vector normal to the 
body on the first row of volumes off of the body. Also represented is the tangential 
component for the two-dimensional case. There is a significant change between the 
two-dimensional and the one-dimensional predictions. It should be reiterated at this 
point that  both emission-dominated and 1D Slab results are to be considered in the 
stagnation point region only. Nonetheless, these preliminary results seem to indicate 
that  the approximations made in the 1D Slab theory may produce a significant 
error. More specifically, the radiative heat flux vector at the stagnation point has 
a dimensional value of 240 MW/rn 2, when evaluated with the 1D Slab theory, and 
a value of 204 MW/rn 2, when calculated by means of the fully two-dimensional 
algorithm. The difference is about 20%. The convective heat flux vector, which is 
shown in Fig. 4, ranges in magnitude from one tenth to one twentieth of its radiative 
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counterpart, which confirms the fact that at this extreme Mach number the heat 
transfer is essentially radiative 6. 

The pressure coefficient on the body is in good qualitative agreement with 
Newtonian theory 2, and is not dramatically affected by radiation modeling. On the 
other hand, the skin friction coefficient is significantly reduced by the presence of 
radiative heat transfer when compared with the baseline case with no radiation, 
although there is no appreciable difference between the predictions of the different 
radiative models. 

4. F U T U R E  W O R K  

The present study has found some evidence that the currently accepted One- 
Dimensional Slab Approximation to the modeling of radiative heat transfer in hy- 
personic applications can be inaccurate. Moreover, the practical feasibility of truly 
two-dimensional radiative heat transfer simulations has been demonstrated, at a 
reasonable computational price when compared with the simplified approach. 

Although the technique discussed is fully general and applicable to a wide 
range of spectrographic models, only the simple gray gas model has been utilized at 
present, and more refined models are necessary in order to improve the accuracy of 
the quantitative predictions. 

More work is needed in order to extend the present methodology to three space 
dimensions, and more validation tests are necessary for different geometries. 
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1 Introduction 
The numerical simulation of high-temperature hypersonic flows calls for an accurate shock 
resolution as well as for the consideration of nonequilibrium phenomena. Not only surface 
pressure and temperature, but also the details of relaxation processes are desired in order to 
understand the nature of these flows and to validate competing thermodynamic gas mod- 
els. In the work presented here, the equations for air in thermo-chemical nonequilibrium 
are solved in a fully coupled manner using a high resolution Godunov-type finite volume 
scheme adapted to the extended system of governing equations. The implicit treatment of 
fluxes and source terms eliminates the problem of stiffness [1] and yields convergence rates 
comparable to those of equivalent perfect gas schemes. 

2 Governing Equations 
Consider the two-dimensional, inviscid flow of dissociating and ionizing air which is taken to 
be a mixture of eleven species (N2, 02, NO, N, O, N +, 0 +, NO +, N +, 0 +, e-). Among 
those species, 47 different chemical reactions are assumed to take place according to Park 
[2]. Thermal nonequilibrium is accounted for by means of different temperatures for heavy 
particle and electron translation (T, T~) as well as by three temperatures for the vibration 
of each neutral molecular species (Tvib,N2, T~,ib,o~, Tvib,NO). Accordingly, three conservation 
equations for vibrational energy and one for electron energy have to be solved. The result 
is the following system of 16 governing equations: 

0 0 ~(q~) = ~q~) 

P?2J 0 PuJ?li ~- ~j,i P 0 
pet + ]~i phtui = 0 

p~,e~ib,~, p.,e~ib,.,ui {QT-v + Q v - v  + Q c - v  }~,+QE-v,~,=l 
p~e~ (p~e¢ + Pe) ui QT-E + QC=E -- QE-V, N2 

= 2, ..., 10 species index r = 1, ..., 47 reaction index 
s' = 1, 2, 3 N2, 02, NO i, j = 1, 2 spatial coordinates (1) 

The continuity equations for N2 and e -  are not included in (1). This is because the constant 
ratio of nitrogen and oxygen nuclei, which is 79/21 for standard air, allows the N2 density 
to be expressed as a linear combination of all other heavy particle densities. Furthermore, 
the assumption of charge neutrality yields the electron density as 

M, 
p, = ~ ~ ps Ms = molecular weight of species s (2) 

s ~ z o n s  

The rate cbr = (RLr - Rb,r) of reaction r appearing in the species production term of eq. 
(1) has been modeled considering the effect of thermal nonequilibrium (coupling vibration- 
chemistry, [3]). The vibrational energy source term accounts for the exchange of energy 
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with heavy particle translat ion (QT-v) ,  with vibration of other molecules ( Q v - v )  and with 
electron translat ion (QE-v ) ,  as well as for the gain and loss of vibrational energy due to 
chemical reactions ( Q c - v ) :  

QT-V,~, = p~, e*ib's'(T)-- e~ib,~, s '  = 1, 2, 3 (3) 
vs, 

Qv-v, , ,  : ~ 0.01,Vavoa,,t v ~#,, p,,pt e'ib"' 
\MS,, ~* (4) t# , '  vlb,t Mt / J 

- Ry,re.i~,s,(T.i~,s,) + Rb,re~b,s'(T.ib) 
Qc-v,., = M., ~ R f,revib,.,(T.i~,) - Rb,revlb,¢(Tvlb,.,) 

r = r e a c t i o n s  0 

where 

if t/s',r < 0 
if t',,,r > 0 (5) 
if u~,,~ = 0 

R~O~ evlb#(X) = exp(O'j/k)- 1 vibrational energy function (harmonic oscillator) 

~ , '  = 1,2,3 P s ' / M s ' T v i b , s  ' 
T v i b  =- ~ , ' =  a,~,3 P ~ ' / M s '  m e a n  v ib ra t iona l  t e m p e r a t u r e  

The ionized molecules are assigned the mean vibrational temperature defined above. 
A comprehensive derivation of the electron energy source term can be found in [4]. 

3 Implicit  So lut ion  M e t h o d  

S c h e m e  

ff 

77 
y 

Figure 1: Control volume in a 2D structured mesh 

3.1 F i n i t e  V o l u m e  G o d u n o v - T y p e  
The integration of the governing equa- 
tions (1) over a two-dimensional con- 
trol volume V~j ( Fig. 1 ) gives 

~ j  + ~A~ - ~0~;) ~ = 0 (6) 

with ~ -- n~.~ + ny.~. 
The flux ~ points in the outward nor- 
mal direction of the respective cell face 
and is taken to be the solution of 
a one-dimensional Pdemann problem 

L with initial left and right states 0" and 
0 "R. The Riemann solver of Roe [5] is 
utilized in the present scheme because 
of its accurate shock resolution which is 
indispensable if post-shock relaxation 
phenomena shall be investigated thor- 
ougly. In addition, this solver can 
be a d a p t e d  to a mult iple-temperature 
model in a straightforward manner: 

= ~1 {~(¢R) ÷ ~(¢L) _ I~I(¢R _ eL)} ; I~1 = R IA[ R-'," (7) 

= [U_L--a,U.L, . . . ,UL,  U_L+aJ;  U± = normal velocity = n=u+ n~v 

~Ro~(¢L, CR) 

A 

0~ is The normal flux Jacobian ¢ = ~-~ 

u± (~s,~-6pO 6n= 5n~ 0 0 0 ] 

] fltgny-vuj_pt vn=--flluny u± +(1-fll)vny fllny -flln~ (2/3-f l l )  ny 
(~16X16 = U.I. (fl~-httzt) htnz--fllU.LU htny - flluj_v u± (ill q- 1) -filuj_ (2 /3 - f l l )u  j_ I 

--~s,evib,s,Uj_#t ~s,evib,s,n~: ~s,evib,s,ny 0 u±~s,,t, 0 I 
-5/3~eeu±#~ 5/3~ee~nz 5/3~een u 0 0 5/3U.L J 

s, t = 2, 10 /?t 9 = 0p(¢) ~s = ~- 6s t = Kronecker delta ""~ Opt p , 

s', t' 1, 3 Pl ~ op(.© " :  " ' "  : O(pe 0 l i t  : -  Opt 
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This Jacobian is calculated at a Roe-averaged state which is not uniquely defined in the 
non-perfect gas case. In this work, the formulation of Abgrall [6] is used. 
In order to achieve second order accuracy, the left and right states ~L and ~R are extrap- 
olated linearly from the cell center. The corresponding slopes are evaluated from locally 
defined characteristic variables. In these variables, slope limiters are applied. Dependent on 
the kind of limiter used, the result is a TVD or ENO scheme [7]. 
The s teady s tate  solution of (6) is computed with the following implicit integration scheme: 

¢"+~ = ¢ " + ~ A ¢ "  (8) 

The parameter  w controlling the update  of A~/it is a relaxation parameter  (w <_ 1). The 
time step At  shows up on the main diagonal of the implicit operator.  In the limit of an 
infinite t ime step, solving the unsteady equation with this method corresponds to solving 
the steady state equation by Newton's method. It has been found that  for flows in strong 
nonequilibrium with source terms of the same magnitude as the inviscid fluxes, an exact 
evaluation of the source term Jacobian 0E/c9~ is crucial for a good performance of the im- 
plicit scheme. 
Since the Jacobians on the left-hand side are being derived from first order accurate fluxes, 
a block-pentadiagonal linear system of equations has to be solved in each iteration: 

3.2 I m p l i c i t  L ine  R e l a x a t i o n  
Consider the pentadiagonal  system (8) in a rather formal notation: 

AO,O - -~it  -1,o --~i t  + A71.,o ~it A °'1. A - i t  AO,71 - i t  i,j ~q~,j + a i , j  z--xqi+l,j ,,~ A q i - L j  + ,,~ q i j+l  + i,~ Aq~,j_l  = - R i j  (9) 

A -°'9 = 16 × 16 matr ix  on main diagonal = derivative of R~ j with respect to ~,j Z~ 3 

A~,f = 16 × 16 off-diagonal matr ix  = derivative of Ri, j  with respect to ~+1, /e tc .  

System (9) will be solved for A~ "it in an i terative manner. A convenient choice for an initial 
guess is A ~  ~t,~=° := A ~  i t - l ,  where a represents an index for the following subiterations: 

1. Increment a;  for each j ,  solve the block-tridiagonal system below for ~,it,~: 

AOiO- - - i t  . . . .  1 ,o - -~ i t  . . . .  1,o---it,a - O , l A ~ i t , a - 1  -o,-1--~it,a-1 (10) 
i,j ~q i , j  t Ai,  j ~q i+l , j  + Ai , j  ~ q i - l , j  = - Ri , j  - Ai, j ~qi,j+~ - ~i , j  ~ q l , j - i  

2. Increment a;  for each i, solve the block-tridiagonal system below for ~,~t,~: 

AO,OA-it ,a --O,l--~it ,a --O,-1A-it,c~ --1,o--~it ,a-1 ---1,0--~t ,~-1 (11) 
i,j z-xqi,j + :~ti,j l-kql,j+l + l-li,j /-~qi,j-1 = -- Ri, j  - / t i ,  j z-xqi+l,j - Ai, j z.xqi_l, j 

3. This process is repeated until ~it,a ~ ~i t ,a-1 ,  i.e. until convergence is reached. 
Thus, system (9) has been solved exactly. 

With  this solution procedure carried out in each global i teration " i t" ,  it is possible to reach 
CFL numbers of 200 for nonequilibrium hypersonic flows containing strong shocks, with 
about 8 subiterations for the solver described above. Whereas for flows without shocks, 
there is no upper CFL limit. The line relaxation scheme can be implemented in an ex- 
tremely efficient way on a vector computer: If the LU decompositions of 16 × 16 matrices, 
which must be performed in the block-tridiagonal solver, are unrolled, it is possible to vec- 
torize the solver for system (10) over j and the solver for system (11) over i. Moreover, since 
the block-tridiagonal operators remain constant in all subiterations, their factorization has 
to be carried out only once in each global iteration. 

327 



4 Val ida t ion  R e s u l t s  

4.1 I n v i s c i d  F l o w  o v e r  a D o u b l e  E l l i p s e  
The first case for a validation of the presented method is problem 6.2-3 of the Antibes- 
Workshop [8] which is a M~ = 25 flow over a double ellipse. Freestream conditions corre- 
spond to an altitude of 75 km. A rather coarse grid of 74 x 26 points has been used in order 
to demonstrate that  accuracy is not only a matter of grid refinement. 

~v" Moo---- 25, AM = 0.25 
p¢~ = 2.52Pa 

, ~ ~ .  p~ = 4.26.10 -5 kg/m 3 

a = 3 0 ~ ~  

a) Mach c o n t ~  

N - t  
'~ -2 
~,_a 

-7 
-8 
-9 

-lO 
- I I  

~ ^  2nd order 

accurate 

0 80  160 2tIO 320  qO0 1t80 

number of iterations 

b) Convergence history 
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2 
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-O.G -0.5 -tt.4 -0.3 -0.2 -0.1 0 0.1 0 . 2  x[.q 
Figure 2: Inviscid nonequilibrium flow over a double ellipse. 

From the Mach contours displayed in Fig. 2a one can observe the main and secondary shock 
resolution. The convergence history (Fig. 2b) gives a rate of about 25 iterations per resid- 
ual order of magnitude for first order and 60 iter./o, for second order accurate calculations. 
In Fig. 2c and 2d the surface Mach number and temperature are compared to workshop 
solutions. The closest resemblence exists with the fine-grid solution of Botta. The temper- 
ature is comparably low, but still too high compared to Salvetti who enforced explicitly the 
equilibrium condition at the stagnation point from where the surface streamline originates. 

4 . 2  H i g h  E n t h a l p y  W i n d  T u n n e l  G S t t i n g e n  ( H E G )  
For the recently constructed HEG shock tunnel, a design calculation of the axisymmetric 
expansion nozzle has been carried out by Harm°mann [9] considering chemical nonequilib- 
rium in 8 different species and a one-temperature formulation (i.e. thermal equilibrium 
assumption). The total enthalpy at design condition is 44.52 MJ/kg ,  stagnation pressure 
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and temperature are 2023 bar and 13780 K,  respectively. This nozzle flow has been recal- 
culated with the present ll-species, 5-temperature model. Fig. 3a compares the center line 

.,-' i .O 

N o.8 

~ e . 6  

0 .~  

• . .  Hanuemann (1-T model) 

I u 

~ -  0 T v,NO 

:,o~ r 

75 150 225 300 375 

a) Tempera ture ,  velocity x [cm] 
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b) Mole fractions a l o n g  c e n t e r  line 

o ~ o  
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X I~ NO÷ 
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X '~X2+ 

~ z o o m  . _ + ~024" 
300 3 7 5  
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Figure 3: HEG expanding nozzle flow. 

results with those obtained by Hannemann. The velocity profiles of both calculations are 
equal within plotting accuracy. The dotted line indicates the temperature that Hannemann 
calculated using a one-temperature model. Because of vibrational freezing at x ..~ 50 cm, 
the vibrational temperatures of the presented model do not fall below 3700 K, whereas the 
heavy-particle translational temperature reaches a much lower value. From these results it 
is obvious that a two-temperature model is the least one needs in order to calculate this flow 
correctly. The corresponding mole fractions are shown in Fig. 3b where the throat region 
has been zoomed by a factor of 10 in order to display the recombination processes in that 
area clearly. The convergence rate for this shock-free flow is 15 iter./o, for the second order 
scheme. 
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1 Introduction 

A new hybrid implicit-explicit (IF,) scheme has been proposed (Collins et al 1990) 
for systems of hyperbolic conservation laws, as well as their viscous extensions, which 
has far-reaching potential in many fields. Here, the difference approximation in time 
is either implicit or explicit, separately for each family of characteristics and for each 
cell in the finite difference grid, depending on whether the local CFL number for that 
family is greater than or less than one. This IE strategy is intended for problems with 
spatially and/or  temporally localized stiffness in wave speed s . The method is based on 
the operator-split second order Godunov scheme (Colella and Glaz 1985). Recently, 
this methodology has been extended for unsplit differencing (Collins 1992, Collins 
et al 1992) by basing the differencing strategy on an unsplit second order Godunov 
scheme (Colella 1990). 

The objective of this research effort is the efficient and accurate computation 
of reactive multiphase boundary layers at both high and low Mach numbers. We 
believe that the IE strategy, when coupled with mesh refinement approaches and 
methods for the stable computation of stiff source terms, can be a valuable tool 
in this field. The purpose of the current study is to further advance and validate 
this IE approach by investigating the effects of including source terms representing 
multispecies reacting flow. For the case of a 1D variable area duct converged solutions 
for both smooth and shocked flows are demonstrated using an extension of the solution 
methodology of Collins et al 1990. An appropriate extension of the unsplit IF, scheme 
has been developed and implemented for 2D reactive flow with periodic boundary 

1 This Work has been supported by the Small Business Innovative Research program of the 
National Science Foundation, Division of Mathematical Sciences under Grant ISI-9022351; 
we are also grateful for the support of the San Diego Supercomputcr Center in providing 
computer resources for this project. 
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conditions; the new scheme is used here for problems analogous to the nonreactive 
results presented previously (Collins 1992, Collins et al 1992). 

2 N u m e r i c a l  M e t h o d  

The 1D equations of motion for a system of conservation laws with a viscous extension 
(e.g., compressible flow) and nongeometric source terms (e.g., chemical reaction) in a 
variable area duct may be written in the form 

Ou ~_~ OH = S(U) (1) O---t + (A(F"a(U) - b(U, U=)) + 

where U is the vcctor of conserved quantities, Fad(U), H(U) are the associated ad- 
vective and pressure fluxes, respectively, A(x), A(x) are area and volume coordinates, 
b(U, U,) is the viscous flux and S(U) is the vector of source terms. We refer to the 
references (Glaz et al 1988 and Krispin 1992) for a detailed description of these terms 
including the reactive air chemistry and the formulation of the viscous flux. The 2D 
inviscid eqnations with Cartesian symmetry axe 

Ou OF OG 
ot + + = s ( v ) .  (2) 

The numerical method for the case S(U) = 0, the frozen flow case, is described (for 
a single atomic specie) in the references (Collins et al 1990 for (1), and Collins 1992, 
Collins et al 1992 for (2)). For both (1) and (2), the nonlinear system arising from 
the implicit characteristics is solved without operator splitting of the source terms 
(which we found to be inefficient as well as inaccurate - incorrect steady states at 
large CFL - f o r  (1)); for (1), the source terms are discretized by S(Vn),  and for 
(2), by 1 ~(S(U ) + S(U"+I)). The solution strategy chosen for the discrete nonlinear 
system arising from (1) is standard linearization for the fluxes. For (2), we use instead 
a weighted Jacobi iteration procedure (Collins 1992); fifteen iterations per t ime step 
are used for thc current results. 

3 R e s u l t s  and D i s c u s s i o n  

Our 1D simulations were made using a standard expanding duct, supersonic inflow 
boundary conditions and 200 mesh points. The exit pressure was varied for the shocked 
flows and several cases were studied; by changing various parameters,  it is easy to ad- 
just the  stiffness of the reaction, the strength of the shock and the degree ofsmoothing 
of the viscous terms if present. The initial conditions were set to be linear profiles - 
which is very far from the steady solution. Some of the results axe shown in Fig. 1. The 
temperature  increases to about 3000°K across the standing shock and the different re- 
laxation scalcs for the three diatomic species can be noted in the figure, and the species 
concentrations exhibit similar behavior (not shown); the inflow density used in these 
calculations was p = 0.48582 × 10-Sgm/cm 3 and T was near room temperature  which 
leads to a relatively strong shock jump. This parameter  combination sets the widely 
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differing relaxation scales. It can be seen that  the frozen and nonequilibrium calcula- 
tions result in slightly different shock locations and postshock profiles - the same exit 
pressure was used in all three calculations. We have noticed significant variation in 
the viscous profile with respect to changes in the two parameters  viscosity and heat 
conductivity for this problem. The residual profile (not norm dependent) is typical for 
problems of this type - a long initial transient as the shock sets up and strong waves 
interact between the shock and the subsonic outflow followed by a steady decline to 
machine accuracy; the 'periodic' appearance at this later stage is also expected since 
the shock profile is changing slightly each time step and there is a characteristic time 
for acoustic signals to traverse the mesh. The CFL maximum was four (resp., three) 
for the inviscid (resp., viscous) nonequilibrium calculation presented; there is no limit 
in practice for the frozen flow case. 
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Fig. 1. Chemically reacting shocked flow in an expanding variable area duct. From .left to 
right: temperature vs. distance at steady state compared with the frozen flow solution as well 
as the viscous flow solution in a small region around the shock location; specific vibrational 
energies vs. distance; I °° residual vs. time step for the total mass equation. 

The 2D simulation is inviscid, uses a 64 x 64 mesh and doubly periodic boundary 
conditions. The initial velocity field u = (u, v) is scaled to match the previously stud- 
ied nondimensional single specie nonreactive calculations (Collins 1992). The initial 
maximum flow Mach number is about 0.1 in the x-direction and the initial shear 
jump is set up using a hyperbolic tangent profile for u with just a few interior points. 
The y-veloci ty  component is given by v = 0.05 * [Umax] * sin2~rx and it is this inviscid 
perturbation which makes the flow nontrivial and leads to the eventual characteristic 
rollup. The CFL maximum is determined by insisting that  the explicit particle char- 
acteristic CFL number be set to 0.9. We note that  the vibrational energies are very 
stiff for this problem at initialization and there is a steep dropoff in maximum tem- 
perature which then holds steady. The vorticity field is shown at three times in Fig. 
2 where the evolution of the rollup is clear. The mass fraction field evolution shown 
in Fig. 3 is more intersting because it illustrates the capability of the current more 
complex scheme to handle intricate flow mixing problems with high resolution detail 
in the noncquilibrium, reactive case as well as the frozen case (not shown, but the 
results are similar), even on the coarse mesh used here. For applications, it is perhaps 
the case that  the mixing phenomenology is at least as important  as reaction rates, 
etc. in determining a successful design. The other important  point to note concerning 
these results is the near total lack of oscillatory profiles, strong pressure waves, etc. 
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which would be inappropriate for the reactive air mechanisms at the chosen flow con- 
ditions; thus, the reactive, nonequilibrium scheme is seen to be as stable as the gas 
dynamics schcme (Collins 1992) in this flow regime. An illustration of this is provided 
in the plot of divu vs iteration count (fifteen iterations per t ime step) presented in 
Fig. 4. Although this is not clear from the figure, the divergence always decreases 
during a time stcp as the iteration count increases. The overall variati6n is consistent 
with an initial transient during which the rollup forms followed by nearly equilibrium 
mixing at smaller and smaller scMes; the magnitude is appropriate for M = 0.1 and 
the expected results of an explicit calculation. 

Fig. 2. Vorticity contour plots at T = 0.8, 1.2, 1.6 seconds using 30 equally spaced contours; 
dashed contours represent negative vorticity. 

Fig. 3. Contour plots of mass fraction of atomic oxygen at the same times as in Fig. 2; 30 
equally spaced contours. The maximum amplitude increases from 5.0 x 10 -9 in the left figure 
to 8.41 x 10 -9 in the right figure. 

For the 1D calculations we find that the performance criteria depend on the degree 
of source term stiffness. In paxticulax, a fairly low CFL maximum is required (that 
is, to obtain convergcd solutions) during parts of the calculations. Unlike the 1D 
calculations, it is found that trapezoidal rule differencing for the source terms is 
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Fig.4.  Plot of max divu over the mesh; divu is computed by differencing the edge values 
obtained from the charateristic projection operators and Riemann problem solutions (see 
Colella 1990, Collins 1992). 

required for stability for the 2D problem presented. In future work we will explore more 
complex treatments of stiff source terms (see, e.g., Lafon and Yee 1992, Pember 1992) 
and, especiMly, the coupling (analytic and numerical) between wave speed and source 
term stiffness. Additionally, we will treat two-phase flows and their source terms so 
that comptcx shock - boundary layer interactions with ablation can be modelled. An 
important numerical issue is developing ~ d  implementing efficient techniques such 
as mult!grid acceleration for the solution of the large imnlinear systems arising from 
this method; advances in this area alone may well be sufficient, via obtaining the 
capability of converging or nearly converging the nonlinear system~ for a dramatic 
improvemcnt in maximum CFL number thereby making the method viable for these 
more difficult applications. 

References  

Colella, P. (1990): 'Multidimensional Upwind Methods for Hyperbolic Conservation Laws', 
3. Comp. Phys. 87, pp. 171-200 

Colella, P., Glaz, It. M. (1985): 'Efficient solution algorithms for the Riemann problem for 
real gases', J. Comp. Phys. 59, pp. 264-289 

Collins, J. P. (1992): Implicit-Explicit Godunov Schemes for Unsteady Gas Dynamics, Ph.D. 
Dissertation, University of Maryland at College Park, Department of Mathematics 

Collins, J. P., Colella, P., Glaz, H. M. (1990): 'An Implicit-Explicit Eulerian Godunov Scheme 
for Compressible Flow', preprint 

Collins, J. P., Colclla, P., Glaz, H. M. (1992): 'An Unsplit Implicit-Explicit Godunov Method 
for Compressible Gas Dynamics', to appear in Proc. First European CFD Conf., ed. 
Ch. Hirsch (Elsevier) 

Glaz, II. M., Colella, P., Collins, J. P., Ferguson, R. E. (1988): 'Nonequilibrium effects in 
oblique shock-wave reflection', AIAA J. 26, pp. 698-705 

Krispin, J. (1992): 'High-Resolution Calculations in Gas Dynamics', Enig TIL 92-2 
Lafon, A., Yee, H. C. (1992) 'On the Numerical Treatment of Nonlinear Source Terms in 

Reaction-Convection Equations', AIAA 92-0419 
Pember, R. B. (1992): 'Numerical Methods for Hyperbolic Conservation Laws with Stiff 

Relaxation II. IIigher Order Godunov Methods', UCR.L-JC-109097 Pt. 2 

334 



A N  U P W I N D  S C H E M E  F O R  O B L I Q U E  S H O C K / B O U N D A R Y  L A Y E R  
I N T E R A C T I O N  I N  A S U P E R S O N I C  I N L E T  

S. M. LIANG, RI N. WU and J. J. CHAN 

Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 
Taiwan, R.O.C. 

INTRODUCTION 
Recent papers 1'~ have indicated that  there is a substantial market in develop- 

ment of High-Speed Civil Transport  (HSCT),  since the HSCT would have greater 
economic benefit if it would fly supersonically overland or oversea. The design of 
supersonic inlets for HSCT is one of important  research areas. Shock waves in a 
supersonic inlet can interact with boundary layer either weakly or strongly, depend- 
ing on the shock strength. A strong interaction can induce a separated flow inside 
the boundary layer, and has local and global effects on the inflow. The effects can 
significantly reduce an inlet performance, if the boundary layer is not effectively 
controlled. Before the use of boundary layer control, it is bet ter  to understand the 
oblique shock/boundary layer interaction. 

In the present study, numerical approach is adopted for studying the shock in- 
teraction problem. A second-order upwind scheme, originally developed by Coakley 3 

4 and improved by Liang and Chan, is employed, although Total Variation Dimin- 
ishing (TVD) schemes b have been widely used for calculation of the Euler/Navier- 
Stokes equations. The disadvantage of TVD schemes is that  TVD schemes are re- 
duced to first-order accuracy at extreme points so that  the solution of skin friction 
coefficient may not be correctly predicted. 

A generic two-dimensional supersonic inlet, as shown in Fig. 1, is constructed 
for the study of shock/boundary  layer interaction. The inlet cowl and centerbody 
are assumed to be adiabatic. The inlet length is chosen as a characteristic length 
and is normalized to be unity. Based on the inlet length, the inlet height is set to be 
0.2 and the throat  height is 0.13. The cowl is a flat plate, beginning at x = 0.354. 
The lower wall (centerbody) starts with a flat plate at the point (0.04, 0) with an 
inclination angle of 9 °, and is followed by a convex wall with radius of curvature 
R = 1.137. The curved surface begins at the point (0.394, 0.056) and ends at the 
point (0.57, 0.07). Further downstream, a flat plate with an inclination angle of 
-0 .88  ° is followed and terminates at x = 0.7 for saving computation time. 

MATHEMATICAL FORMULATION 
The equations governing the two-dimensional inlet flow are the compressible 

Navier-Stokes equations, which can be written in a body-fit ted coordinate system 
a s  

v 0 , v  + + + 0 . ( g  + = 0 (1) 

where U is the conservative variable, F '  and F"  the inviscid and viscous flux vectors, 
respectively, and v the volume of a control element. More information about Eq. (1) 
can be found in Ref. 3. Equation (1) associated with the Baldwin-Lomax turbulence 
model 6 is employed to model the inlet flow and solved numerically. 

NUMERICAL METHOD 
The implicit method used in the study is based on the Coakley scheme s with 

the following modification in the numerical dissipation: 

Dd-1-l/2 = S-d-t-1/2h.F~ l/2 -I- L,~I/z( Ad+ ,/2AW,+a/2 - AJit+ I/2 AWd_I/2) 
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where AW = LAU,-S = L-lsgn(A)L, A( ),+1/2 = ( ),+t - ( ),, and L and A consist 
of the left eigenvectors and eigenvalues of flux Jacobian matr ix ,  respectively. Note 
tha t  the variable W denotes the characteristic variable and its value is evaluated at 
the cell interface by Roe's  averaging. 7 Although S A F  = L-11AIAW, it was found 
the replacement of L- I [AIAW in the Coakley scheme by S A F  was able to resolve a 
sharp shock wave definition. One- and two-dimensional inviscid flow solutions have 
verified the merits of the modified numerical dissipation. 4 

RESULTS AND DISCUSSION 
All numerical calculations were performed on a Vax-8600 computer .  The con- 

vergence criterion is set by measuring the 12 norm of the density errors less than  
10 -°" 

In order to verify the scheme accuracy, the test problem of an incident shock 
impinging on a laminar boundary  layer over a flat plate at freestream Mach number  
2, Reynolds number  2.96 x 105, and various incident shock angles, 0a = 31 °, 31.5 °, 32 ° 
and 32.6 ° was considered. The computed wall pressure rise caused by the incident 
shock is about  1.15, 1.22, 1.31, and 1.41 for 0a = 31 °, 31.5 °, 32 °, and 32.6 °, respec- 
tively. For 0~ = 31 ° and 31.5 °, no flow separation was observed. For 0~ = 32.6 °, a 
pressure plateau was developed, which corresponded to the formation of a reversed 
flow. In contrast  to the experimental  results of Hakkinen et al., 8 the flow s tar ted 
to separate  when the pressure ratio of P2 to Pl is 1.25, where P2 and Pl denote the 
pressures ahead of and behind the shock reflection, respectively. The result of com- 
puted skin friction distribution indicated tha t  the critical value of the pressure rise 
for separation, P2/Pl, was about  1.25, which coincided with the experimental  value. 

Next,  consider an inflow with freestream Mach number  2.4 and zero degree 
angle of at tack.  The  Reynolds number  is chosen to be 1 × 106. 
Case 1: laminar flows: 

Solutions for laminar flows were obtained on five different grids. Basically, the 
grid spacing in the x direction, Ax, is uniform. For x < 0.354, Ax is chosen to be 
0.01, and Ax = 0.0035 for 0.394 < x < 0.7. For 0.354 < x < 0.394, the grid spacing 
Ax is stretched. This is a transition region tha t  connects the coarser grid and the 
finer grid. The transit ion grid was found to be able to eliminate the numerical 
wiggle tha t  occurred on the grid without the transit ion region. In the y direction, 
the grid distribution was stretched from the wall. The minimum spacing, Ay,~i,,, 
was selected to be 3 × 10 -5 for a 129x55 grid, which was found to be fine enough 
for resolving the local flow structure in the shock interaction region. 

It  was found tha t  there are three regions with negative values of the skin 
friction coefficient. The particle traces in the shock interaction region are shown 
in Fig. 2a. It  is shown tha t  there are two clockwise and one counterclockwise 
rotat ing vortices inside the separated region. The largest clockwise vortex,  called 
the pr imary  reversed flow, induced a secondary flow with counterclockwise rotat ion 
direction. The secondary flow induced a ter t iary flow. A subplot in Fig. 2a sketches 
the flow structure of the pr imary  reversed flow. Based on the topological rule of 

1 1 skin-friction lines, 9'1° the rule of (~N + ~ N ' )  -- (~S + ~ S ' )  = 0 must  be satisfied, 
where ~ stands for the number  of nodal or saddle points, the subscripts N, S for the 
nodal and saddle point,  respectively, and the superscript  s for the nodal  or saddle 
point on the body surface. In this case, ZN = 3, ~N'  = 0, Es  = 0, Es' -- 6, so 
this rule is satisfied. Figure 2b shows the corresponding pressure distribution. The 
adverse pressure gradients axe clearly shown, as indicated by an arrow, leading to 
flow separation. In addition, a saddle point in the pressure distribution, denoted 
by S, is found. Moreover, several local max ima  in the pressure distribution are also 
shown. 

The existence of the critical points in the pressure distribution may reduce the 
TVD scheme to be first order accuracy, causing a wrong prediction in the pressure 
and the skin friction. Figures 3a and 3b show the surface pressure and skin friction 
distributions by using the TVD scheme. 11 Figure 3a indicates tha t  the TVD scheme 
does not produce a pressure plateau, i.e., the constant pressure region. Thus the 
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prediction in the structure of local flow separations seems to be not correct, as shown 
in Fig. 3b. 
Case 2: turbulent flows 

Figure 4 shows the comparison of local flow structures in the shock interaction 
region for laminar and turbulent flows. Generally turbulent flows can transport 
momentum and overcome the adverse pressure gradient better than laminar flows 
can under the same flow conditions. Thus the size of separation bubble for turbulent 
flows is smaller than that for laminar flows. Note that the tertiary flow in Fig. 4a 
is not visible because the velocity field was not plotted at every point and the size 
of the tertiary flow was relatively too small. 

Conclus ion 
A Navier-Stokes solver using a second-order upwind scheme has been developed 

to investigate the oblique shock/boundary layer interaction in a supersonic inlet. 
The upwind scheme was verified to be reasonably accurate and robust. The local flow 
field in the shock interaction region was investigated in details. An interesting flow 
structure of multiple separation bubbles for laminar flows was found numerically, 
which satisfied the topological rule of skin-friction lines. 
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Fig. 1. A sketch of a supersonic  inlet.  
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Fig. 3. Comparison of (a) surface pressure and (b) skin friction coefficient 
on the centerbody using different schemes. 
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Fig. 4. Comparison of local flow structures for (a) laminar and 
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Calcu la t ion  of  a v i scous  h y p e r s o n i c  nozz le  
f low by a s econd  order impl ic i t  s c h e m e  on 

u n s t r u c t u r e d  m e s h e s  

A. M e r l o ,  R.  A b g r a l l  
I N R I A  S o p h i a  A n t i p o l i s ,  B P  92, 06902 ~ S o p h i a  A n t i p o l i s ,  D a n c e  

This paper follows a serie by the authors [5, 6] about the numerical simulation in 
hypersonc wind tunnels. It is divided into three parts : first, we describe briefly our 
physical model, second, we detail our numerical method then numerical experiments 
and results are presented. 

1 P h y s i c a l  M o d e l  

In our model of air, we take into' account five species (0, N, NO, 02 and N2) and 
they will correspond to indices 1,2,3,4 and 5. The mixture is made of 21% of Oxygen 
and 79% of Nitrogen. The diatomic species O2 and N2 may be in vibrational non 
equilibrium. Their vibrational temperature are denoted To~ and TN~ respectively. 
The species NO is set to vibrational equilibrium. The pressure p is given by Dalton's 
law. The internal energy is defined e as the sum of the internal energy of each of 
the five species; each one is the sum of a rotational-translational part characterized 
by the temperature T, a vibrational part characterized by a temperature T,~ (for 
the diatomic species only) and an energy term (hi °) due to possible formation. The 
vibrational energies are related to Tv, assmning the harmonic oscillator model [3]. The 
characteristic temperatures Oi of that model and the enthatpy hi ° are those assumed 
for the Antibes workshops [5]. 

1 .1  C h e m i c a l  a n d  Vibrational effects 

The chemical model is Park's and the vibrational model is Landau-Teller's. The source 
terms involved by the chemistry are denoted I)3,' fli ~ and those by the vibrational effects 
by fll v. We assume no coupling between dissociation and vibration. The relaxation 
times are given by [3, 2] : r~ -1 = E~z)~ci~ e' X¢,r~g,-1 where r4,~, are relaxation times 
ans X¢, is the molar concentration of species ('. 

1 . 2  V i s c o u s  e f f e c t  

The stress tenser is modelled assuming Stokes' relations. The cinematic viscosity is 
obtained by Wilke's and Blottner's law. Each species has a diffusion velocity, it is 
obtained by Fick's law assuming a constant Lewis Number (=1). The vibrational 
heat fluxes are calculated with Fourier's law which heat conductivity is obtained 
by Eucken's law. The heat flux is the sum of the vibrational heat fluxes, energy 
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fluxes caused by diffusion of species and a Fourier term that  is modelled by the same 
relationships. The coefficient we have used are those of Candler's thesis [2]. 

2 N u m e r i c a l  M e t h o d  

The present numerical method is a. direct extension of the implicit scheme developped 
by Fezoui et al [4] for perfect gases to chemically and vibrationMly non equilibrium 
axisymmetric  flows. It uses unstructured meshes and upwind solvers. In the two 
following paragraphs, we will only present an adaption of that  scheme for reacting 
axisymmetric  flows ; a description of the basic method can be found in [4]. 

2.1 Navier  Stokes equat ion  

We integrate the Euler equation adapted to the present case : 

o [ c ( w )  + G.( l¥) ]  = a +  H (1) 014/- 0 [F(W) + i~,(1¥)] + 
0-7- + ~ 

where W ([pi]i=,,s, pu, pv, E,[ 'v,]/=~,.5) (t~ and v are the x and Y component of 
the velocity, E is the sum of internal energy and cinetic energy), F and G are the 
Euler fluxes, F~ and Gv are the viscous fluxes, H is a source term to take into account 
axisymmetry  and f~ = ([ai~]i=l.S, 0, 0, 0, [f~i"]i=4,~) • 

2.2 First order scheme 

Around each node, one constructs a control volume and one classicaly evaluates a 
numerical flux. Here, we have chosen a.n extension of Osher's fluxes detailed in [1]. 
Lots of test cases have shown that this extension has the same properties as the 
original Osher's Riemann solver and do not need any entropy fix, even for very strong 
shocks. It also respects the relative proportion of moles of Oxygen and Nitrogen. 
The discretisation of the diffusive termes is achieved assuming a P1 reconstruction of 
the density, velocity, temperatures and a Calerkin type approximation. To take into 
account axisymmetry,  we start  from a conservative 3-D formulation of the scheme on 
an unstructured mesh obtained from a 2-D mesh of the upper part  of the nozzle. If Ox 
is the axis of symmetry,  the 3-D lnesh is gel. from the 2-D one by applying a discrete 
set of rotation of angle k x 2re/n, 0 _< k < '17 around Ox. Then we particularize the 
3-D scheme by taking into account the geometrical symmetries of the flow. This leads 
to a discretisation of the source term H that is co,.~istent with the discretisation of 
the convectives one and depend on the Riemmm solver. The global scheme is exactly 
conservative. 

In order to improve the convergence to the stationary solution an implicit scheme 
is used following [4]. The Ja.col)ian of the numerical flux is approximated by Steger- 
Warming's.  The chemistry and vibrational efl'ects are strongly coupled to the flow 
terms. At each iteration, the nnmerical system is solved by point-Gauss Seidel it- 
eration. This yields to a very etficient numerical method, especially for external 
supersonic flows where the houndary conditions are very easy to take into account. 
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2.3 S e c o n d  order  s c h e m e  

We have used the MUSCL technique as in [:1] with some a.daptions. One can choose 
several sets of variables to reach quasi second order of accuracy. The "best" set seems 
to he the so-called physical variables (velocity, internal energy and total density), 
m a s s  fractions and specific vibrational energies for O2 and N2. If one makes linear 
interpolation on each mass fraction, one will in some cases change the composition 
of the mixture since the limitation procedures are higly non linear and since the rule 
"21%-79%" is expressed through a linear relation hetween mass fractions The "best" 
choice here is tho interpolate on )~, }"; and }) since in the convergent part  one have 
very few diatomic oxygen and in divergent part very few monoatomic nitrogen. The 
other features of the scheme are classicah 

3 N u m e r i c a l  e x p e r i m e n t  

3.1 In i t ia l  C o n d i t i o n s  

The the reservoir condition for the nominal case studied here are : Pressure : 1530 
Bars, Temperature  : 6500 K, COml?osition : obtained a.ssuming equilibrium. The 
equilibrium model we have used is that oblained from Park's.  Vibrational equilibrium 
is  assumed. The wall temperature  is 600 K. 

We initialize the calculation by using the exact solution of the quasi-lD problem 
with the reservoir condition stated above and assuming the mixture remains perfect 
with a ratio of specific heats equal to the ratio of enthalpy and pressure in the reservoir. 
A first order calculation is done asstmdng an Eulerian flow. Then this solution is used 
as an initial guess for the Navier Stokes calculations. 

The geometry of the nozzle is made by two cones (convergent 45 °, divergent 10 °) 
connected by a circle which radius is 1 cm. That  of the throat is 3mm. 

3.2 S o l u t i o n  m e t h o d  

The Navier Stokes simulations are done in two stages : we split the mesh into two 
parts. The first block contains the convergent, the throat and the divergent up to 3 
cm after it. The second hock overlaps the first, on 1 cm and contains the remaining 
of the nozzle From the Eulerian intial guess, a first then a second order calculation 
is made on the first block. We then use the solution on the overlapping region to 
initialize the second block. The runs are stopped when the L 2 norm of the normalized 
density residual is less than 10 .4 . This may seem very large but one should be aware 
of the difficulty of the problem as it can be seen froln the results. 

3.3 M e s h  

Several meshes have been used. From our experiments, it turns out that  the best m e s h  

should have enough points around the throat and that their y-distribution should be 
as regular as possible. In order to capture reasonably well the boundary layer and 
because of the very large temperature  gradients near the wall, one must have at least 
20 points every where in the boundary layer which is the case for our mesh. An 
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additional difficulty is that size of the bonHda.ry layer varies very much fl'om the 
convergent to the exit. This mesh is constructed fl'om a 200 × 60 structured mes (first 
block : 6000 points, second block 6600 points, overlapping : 600 points). 

3.4 R e s u l t s  

Because of lack of space, we present a very limited set of results. A Zoom near 
the throat of the translational temperature is shown in Figure 1. One clearly see the 
change of inclination of the temperature lines near the throat. This phenomena is due 
to the rapid expansion and to the shal?e of the nozzle, it can bee observed only with a 
very fine mesh. A plot of the temperatures along is axis is displayed on Figure 2. One 
clearly see the frozing phenomena as well as the above mentionned pressure wave. A 
plot of the Mach number (Figure 3) shows that the flow is very little affected by the 
viscous effects near the axis, the same comparison with all the variables (temperatures, 
mass fraction) give the same indica.tion. The size of the boundary layer varies very 
much in the nozzle as can be seen on Figm'e 4 where ~ = (y - y ..... l~)/Y . . . .  l~ : the 
size of the boundary layer varies from less than 1% to 10% of the throat. 

4 C o n c l u s i o n  

We present calculations made for a diiiicult axisymmetric viscous nozzle flow. The 
results compares well with the results obta.ined in [7]. This results will be used to 
assess similarity parameters, such as the binary scaling one, often used to extrapolate 
experimental results to real flight. 
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Figure 1 : Isolines of T, max=6468 I,:, rain=296 K, AT=200 K 
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+Universit'~ di Roma, "La Sapienza," Roma, Italy 

1. Out l ine  of  the  m e t h o d  
An extension of the )`-scheme with shock fitting [1] to viscous flows can be used 

efficiently to compute rather complex flow fields. The ),-scheme with shock fitting 
allows unsteady flows to be analyzed on as coarse a grid as possible. Smearing 
of shocks can be avoided, thus minimizing the numerical uncertainties associated 
with shock-boundary layer interactions. Using current second-order accurate shock- 
capturing codes, either the accuracy is reduced or oscillations occur at shocks. In 
either case, the overall validity of the computation has not been clearly assessed to 
date. Adaptive grids or grid clustering may help in resolving geometric singularities, 
boundary layers, vortex sheets and vortex centers, which spread as functions of 
the Reynolds number, but these are less efficient in the case of shocks, which are 
represented better as discontinuities since their thickness is of the order of a few 
mean free paths. 

The technique used in this paper treats convective and diffusive terms in different 
ways, according to their physical nature. The viscous terms to be added to the right- 
hand sides of the inviscid equations as source terms are three: two components of 
the viscous contribution to the momentum equations, produced by the stress tensor, 
and the local contribut, ion to entropy, produced by dissipation and heat conduction. 
The viscosity is defined by Sut, herland's law. All viscous terms are computed, prior 
to each level of the ),-scheme, by centered differences. On the rigid walls, both 
velocity components vanish, no viscous term is computed, temperature follows from 
either the adiabatic or the isothermal condition, and pressure is computed assuming 
zero pressure gradient normal to the wall. 

The main stream being supersonic,, the upstream and downstream boundary 
conditions are trivial. In the subsonic downstream computational boundary within 
the boundary layer, zeroth-order extrapolations are used, consistent with the local 
parabolic nature of the flow. 

Orthogona! grids, generated by conformal mapping of the z(= z + iy)  physical 
plane onto a ¢(= ~ + i~j) plane are used throughout; they make the coding simpler 
and the results more accurate. The computational grid is Cartesian. The X-lines are 
parallel to the image of the wall, located at Y = 0. A strong stretching is provided 
in the Y-direction, to cluster lines near the wall. The stretching is controlled by the 
Y of the upper boundary of the grid, the number of X-lines and the height, AV, of 
the first cell in the mapped plane. 

Since (contrary to the case of inviscid ),-schemes) pressure is stored for the 
calculation of viscous terms, shocks may be detected by looking for inflexions in 
the pressure distribution. All other shock-fitting features follow the general rules 
mentioned in [1]. Onty shock points located on x-lines are considered. 
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2. Nume r ic a l  Resu l t s  

A large number of calculations were made to test the range of validity of the 
code. Our first concern was with the response of the viscous subroutine and of 
the shock-fitting procedure to Reynolds nmnber effects and to wall temperature 
boundary conditions. Flow over a flat plate was considered first, with free-stream 
Math numbers ranging between 2 and 10 and Reynolds numbers between 1,000 and 
6,000,000. Grids of different fineness were used, with 60 to 120 intervals along the 
wall and 40 to 80 intervals in the normal direction; A~I ranged between .01 and 
.0001, according to the Reynolds number. The boundary layer is resolved with 10 
to 20 grid points. The behavior of the flow near the leading edge confirmed the 
theoretical results of [2]. From a strictly numerical viewpoint, it is interesting to 
note that, particularly for tow Reynolds numbers, shocks can be fitted in front of the 
leading edge all the way down; the first shock point, however, tends to move over the 
wall and gets trapped exactly at the leading edge itself (obviously, we cannot have 
a steady shock on the wall, where the velocity vanishes). The other shock points 
remain anchored to the first, and the entire leading edge shock is slightly displaced 
to the left (Fig. 1); its slope, however, is correct. If fitting of the shock is forbidden 
for a certain number of horizontal rows above the wall, some coalescence of pressure 
waves occurs slightly downstream of the leading edge, and the fitted shock proceeds 
thereafter (Fig. 2). Indeed, the work of [2] clearly shows that the flow at the leading 
edge starts with a non-contimmm region followed by a merged-layer region. In the 
latter, the thickness of the "shock" and of the boundary layer are of the same scale. 
Further downstream, shock and boundary layer become distinct and the shock is 
much thinner than the boundary layer. The merged-layer region is represented by 
the coalescence of pressure waves above the leading edge in Fig. 2. The strong effect 
of the free-stream Mach number on the leading edge interaction is evident in Fig. 
3, that shows a preliminary attempt to interpret the model of [2] via a numerical 
analysis. In it, the shock slopes for three values of M~ are shown. At station A, 
the corresponding velocity profiles are plotted. It is clear that, for M~=2 and 3 
the shocks are already far from the boundary layer, whereas for M~=8 the shock 
is still with{n the boundary layer and station A may be considered in a region of 
strong interaction. Convergence of residuals to machine-zero occurs spontaneously 
in certain cases (Fig. 4). In others, the first shock point may oscillate indefinitely 
within a cell, because of numerical interactions with the leading edge itself; in this 
case, if we freeze it when its average displacement is a small fraction of the cell 
length, say, convergence to machine-zero is reached again quickly. Typical lengths 
of the runs are 4000 computational steps. At low free-stream Mach numbers (less 
than 3), comparisons of velocity profiles in the boundary layer with a Blasius profile 
as modified according to Stewartson [3] are very good (Fig. 5). The wall pressure 
follows the theoretical trend [4] very closely; see Fig. 6, where results from a shock- 
capturing calculation also are shown. Adiabatic walls are harder to evaluate, because 
the wall temperature may become very high, substantially increasing the viscosity. 
In the context of our current code, it was found that a parabolic approximation for 
the temperature distribution normal to the wall is a must to obtain a reasonable 
approximation of the theoretical value (Fig. 7) where, again, results fl'om a shock- 
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capturing calculation also are shown. A final validation test was made, comparing 
our results with experimental data of Pitot pressures [5] (results omitted here for 
brevity). 

The second series of calculations analyzes the generation of shocks and the pos- 
sible appearance of a recirculation region on a flat plate followed by a wedge. Here 
again the same ranges of Maeh numbers, Reynolds numbers and A~l mentioned above 
were explored. More combinations of grid resolutions in either direction were used, 
with the number of vertical lines ranging between 60 and t20 and the number of 
horizontal lines ranging between 40 and 180. Space limitations prevent us from 
presenting more than one case; we have opted for a 20 ° wedge in a stream defined 
by M~=3 and R~=15000; the wall is isothermal, and the wall temperature equals 
the free-stream temperature. The grid has 60 intervals along the wall and 180 in 
the normal direction; A~j = .0005. This case has been chosen because three shocks 
are sufficiently strong for fitting: a leading edge shock, losing strength as it pro- 
ceeds away from the wall, the separation shock, and the reattachment shock. The 
two latter shocks coalesce into one within the computed region. Lines of constant 
X-velocity components are shown in Fig. 8, isobars in Fig. 9. For the sake of com- 
parison, isobars obtained by a shock-capturing code are also shown in Fig. 10. The 
extension of the recirculation region is seen in detail in Fig. 11, where the value of 
the X-velocity component at the first grid row above the wall is shown. 

A third set of computations was made to analyze the reflection of an oblique 
shock from a rigid wall. The fl'ee-stream Mach number is 2 and the Reynolds 
number is 296,000. A down-running shock is produced by a 3 ° deflection. Isobars 
computed with the shock-fitting code and with a shock-capturing code are shown 
in Fig. 12 and Fig. 13, respectively. In Fig. 12 the shocks are not marked by x as 
in previous figures. A comparison of Fig. 12 and Fig. 13 indicates the amount of 
shock spreading in the shock-capturing results. Such a spreading can significantly 
distort the computed results. 
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Introduction 
For any scramjet engine, the mixing and combustion process is governed by a free 

shear layer emanation from the juncture of the air and fuel streams. Thus, it is important to 
study these mechanisms to improve supersonic combustion technology. For these reasons, 
an understanding of the behavior of supersonic shear layers is a necessary prerequisite to 
setting criteria for the control of mixing in supersonic flows. 

In this study, spatially evolving supersonic mixing layers were investigated with several 
sets of initial and boundary conditions applied based on flow characteristics 1. Finite element 
techniques were used to take advantage of the triangular grid adaptation capabilities. 
Experimental results which contain turbulent upstream boundary layers 2, are chosen to test 
the performance of the simulations. 

We may regard a thin shear layer as a discontinuity in the velocity, i.e. a vortex sheet. 
Such a vortex sheet is unstable since any small disturbance will initially grow exponentially. 
This instability leads to rolling up of the vortex sheet into a spectrum of vortices which 
include large scale structures, which drives the turbulent process for shear layers. Thus the 
large-scale motions are primarily inviscid in nature and exist for all Reynolds number beyond 
some critical value. The physics of the mixing layer are the result of an essentially inviscid 
interaction between neighboring vortical structures which lead to entrainment of the unmixed 
fluids into the shear layer. Large eddy simulations have been shown to predict mean and 
turbulent features more robustness than Reynolds-averaged calculations. In this context, the 
unsteady Euler equations were employed to allow large eddy simulation of the large scale 
structures within supersonic mixing layer in hopes of capturing the mixing processes only as 
far as the entrainment dynamics. 

Nl|merical Model and Numerical Method 
The numerical model used to carry out the simulations consists of the two-dimensional, 

time-dependent conservation equations of mass density, momentum and energy for the 
inviscid perfect gas (although artificial viscosity is present). To compute the mixing (as a 
result of convection), a mixture fraction conservation equation was also included for some of 
the calculations. The gas dynamic equations for compressible flow of an ideal gas can be 
discretized to form a conservative scheme 4. The higher order solution for FEM-FCT is 
obtained via a two step form of the Taylor-Galerkin scheme, which is second order scheme in 
space and time. Spatial discretization is performed via the Galerkin weighted residual 
method.A low-order term contribution is combined with the high-order term contribution 
through the FEM-FCT 5 formulation to prevent the formation of overshoots or undershoots in 
the conserved quantities near admissible discontinuities. The global limiter for the first cases 
was set to be the minimum of the Cel for r and re since this conventional limiter yielded 
monotonic gas flow properties for a minimal contribution of the low order solution in several 
past studies. 6 However, the code was modified to include the mixture fraction equation with 
the Euler equation. With the new information of mixing gradients now available, the limiter 
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for the gas dynamic variables was kept the same, but the limiter for mixture fraction equation 
was applied independently using the Cel from mixture fraction. 

Grid adaptation was employed to optimize the distribution of grid points by refining 
areas with high gradients of flow variables and coarsening areas of low gradients of flow 
variables. This allows a balanced (and efficient) distribution of truncation errors. Two 
different error indicators were used. For the first cases, density was used as an error 
indicator since it was found to yield excellent resolution of compressible phenomena such 
as shock waves. However for the cases which included the mixture fraction equation, the 
variables of mixture fraction and density were both used since the mixture fraction is a 
natural indicator of the interface of the two layers - and thus, of entrainment. 

Simulat ion Condit ions  
Two sets of flow conditions were used. The first set of computations were chosen to 

examine a large range of convective Mach numbers, i.e. cases A-E. A second set of 
calculations were performed which duplicate the conditions given for an experimental case of 
Goebel et al. 7, i.e. case F. This particular case was chosen since both streams were 
supersonic and the convective Mach number (Mc) was around 0.5, which insured a 
predominantly two dimensional character of the supersonic mixing layer 8 thus making it a 
practical case to simulate. Computational domain and boundary conditions for the present 
calculations are shown in Fig. 1. 

--7]7ow Ts ou oo ,, f 
p L . . . . . .  1 

Fig 1. Physieal computational domain and 
boundary eondilxms 

For the error indicator, density was used for cases A-E, whereas density and mixture 
fraction were used for case F. 

For the calculations of set I (cases A-E), a step function profile was used as the initial 
condition. Three types of initial conditions were applied to the computations for case F to 
determine the effects on both the mixing layer dynamics and the prediction fidelity with 
experimental results. These initial conditions included 1) step function, 2) boundary layer 
based on the paper of Child and Sun. 9 and 3) hyperbolic tangent profiles for all flow 
variables. All calculations are unforced in the sense that no external frequency is imposed 
on the flow through boundary or initial conditions. 

Results and Di,wussion 
Figs 1 shows mixture fraction Gouraud shaded contours at 12,000 timesteps, which is 

considered to be a fully-developed State. The classic incompressible eddies were noted along 
with "flattened" eddies, which appear to be correlated with pairing processes. This is 
presumably an effect of the compressibility on the large scale structures - and is possibly the 
major cause of the reduced mixing phenomena. Note, such an mechanism can not be 
described by linearized analysis. 

Figs. 2 is v-velocity Gouraud shaded contours at 12,000 timesteps for a step function. 
Unstable waves and rotations of vortices and their dynamics yields perturbations of v- 
velocity, which is on average zero. The extent of these perturbations is proportional to the 
eddies size and coherency (correlate with Fig.l). Therefore, the source of v-velocity 
fluctuations, and turbulent intensity of transverse direction (v-rms) mainly originate from 
large scale structures and their dynamics. It was also noted that coherent structures and 
strong perturbations appeared to come in low frequency waves, i.e. groups of strong eddies 
were followed by groups of weaker, less coherent eddies. 
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Fig. 3 shows the mesh refinement levels for the baseline case at 12,000 timesteps. 
Each color represents successive refinement levels (blue : 0th level, green : 1 st, yellow : 2nd, 
red : 3rd and purple : 4th refinement level). Mesh refinement was noted to yield high 
resolution along braids and edges of vortices, as desired. Figure 4 exhibits two line contours 
of the mixture fraction at 12,000 timesteps, which indicates asymmetric entrainment i.e., the 
high speed fluid is entrained at 'a higher rate than that of the lower speed stream. This 
asymmetric entrainment was not found in the temporally growing mixing layer simulations 
because periodic boundary conditions prevent this nonlinear phenomena. 

Fig. 5 exhibits a vortex pairing process where an upstream vortex has begun to ride the 
tail of a downstream vortex. The yellow colored region is believed to represent entrained 
fluid. The mixture fraction contours for the high speed are more diffuse and more 
convoluted than on the low speed side. Fig. 6 shows velocity vectors colored by the Mach 
number range. The convective velocity calculated based on Roshko and Papamoschou 2 was 
subtracted from upper (U1) and lower (U2) velocities. The vortices rotate about their cores 
and show highest speed right over vortex cores and lowest speed under vortex cores. 

Fig. 7 shows the variation of the normalized growth rate versus convective Mach 
number defined by Papamoschou et al.16 The mixing layer growth rate (db/dx) was 
normalized by the incompressible visual growth rate (db/dx)o. The cases A-E are used for 
calculations. It can be clearly seen that the growth rate of the mixing layer decreases with 
increasing convective Mach number This reduction of growth rate is due to effects of 
compressibility which correlate well with convective Mach number. The present predictions 
show this trend as welt with reasonable quantitative agreement. 

The similarity coordinates used for similarity profile are h=(y-yo)/b for turbulent 
analysis. The first 1,500 timesteps after the flow reached a fully-developed state were used 
to predict mean velocity profiles and the next 7,500 timesteps were used for u-rms, v-rms 
and Reynolds stress profiles. The step function case (Fig. 8) first diffuses in shape then 
converges to a similarity hyperbolic tangent profile by 20 cm. The boundary layer case (Fig. 
12) shows the effects of the wake up to 15 cm and then converges to a hyperbolic tangent 
profile. The agreement for the experimental data given at 30-35 cm downstream is quite 
good two cases. Thus the effect of the initial conditions has only a small affect on the mean 
profiles. However, turbulence quantities are a more sensitive indicator of flow development. 

The u-rms predictions for the step function initial conditions are shown in Figures 9. 
This result exhibits both a primary peak at the centerline aswell as secondary peaks at values 
of h near 0.6. The v-rms predictions for the three initial conditions are shown in Figures 10 
and 13. Two cases exhibit only a primary peak near the centerline which is consistent with 
the experimental results. The step function case converges after 20 cm; the boundary case 
converges monotonically at 20 cm. The Reynolds stress predictions for the three initial 
conditions are shown in Figures l l a n d  14. All two cases exhibit primarily negative 
Reynolds stresses except for the step function case at 20 crn, and to a lesser degree the 
boundary layer. The only the boundary layer case can be considered to be fully converged. 
Peak values of two cases are roughly half that of experimental values. 
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Fig .  1. Mixture fraction Gouroud shaded contours at  12,000 
timesteps. The step function is used as a initial condition. 

F ig .  2. V-velocity Gouraud shaded contours at 12,000 
timesteps. The step function is used as a initial condition. 

F ig .  5. Mixture fraction line contours at12,000 timesteps. 
The step function is used as a initial condition. 
The number of contour lines are 64. 

F ig ,  3. Two line contour of mixture fraction at 12,000 
timesteps. The step function is used ~m a initial condition. 

F ig .  4 .  The mesh refinement level plot at 12,000 timesteps. 
The step function is used as a initial condition. 
(0th level; blue, 1st ; green, 2nd; yellow, 3rd; red, 4th ; purple). 

F ig .  6. Velocity vector contour colored by Mach number 

at 12,000 timesteps. The step function is used as a ini tial 

condition. 
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Numerical  Solution of  Hypersonic Real Gas Flows Using Method of  Lines 

Nobuyuki Satofuka, Koji Morinishi, Asami Matsumoto and Osamu Ogawa 

Kyoto Institute of Technology 
Matsugasaki, Sakyo-ku, Kyoto 606 JAPAN 

1. Introduction 
An explicit method of lines approach 1) has been applied for solving hypersonic real 

gas flows governed by the Euler and Navier-Stokes equations. The method is based on a 
finite difference approximation to spatial derivatives and subsequent time integration using 
the rational Runge-Kutta 2~ scheme. Both finite rate and locally equilibrium approaches are 
adopted in the chemical reaction model for dissociation of the air. Numerical results are 
presented for the hypersonic flows over a double ellipse/ellipsoid. 

2. Governing Equations 
The Navier-Stokes equations subject to the two-dimensional general coordinate 

transformation can be written in dimensionless, conservation-law form as: 

where the conservative quantities ~ and the flux terms ffS, F", R and S" are 

=j-1 L 
pv 

e 

pU 

, ~= j -1  p u U + ~ p  

[ pv U + ~yp 
(e +p) u 

, ~ = j - 1  

pV 
p u V + rb, p 
pv V + rbp 

(e +p) V 

(1) 

(2) 

No] ~=j -1  xxsx+Xytxy ~'=j-1  hxsx+hytxy 
x=t~+xysy / '  / h=t~+hysy I 
x,R. + xyS. l L h, R4 + hy S._I 

with the viscous stress, 

ox=2u -2u , (3) 

~1  ~:bT Y 1 c a t  R4=uffx+V'r'xY+ Pr ~x' S4=uz'xY+v ~ + ~ 1  Pr ~ "  

Here p,p and T denote the density, pressure and temperature. In the viscous terms, Re is the 
reference Reynolds number, Pr the Prandtl number, p the viscosity coefficient and ~: the 
coefficient of thermal conductivity. The equations of state for equilibrium air can be written 
a s :  

p =(}-  1 )pi  (4) 

where } is the ratio of specific heats and is a function ofp and i which is given by Srinivasan 
et aP ). For a non-equilibrium model we chose following three reaction model proposed by 
Park4). 
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02 + N2 = 2 0  + N2 
N2 + O = NO + N (5) 
N O + O = O 2 + N  

The so-called contravariant velocities U and V are obtained from the Cartesian velocity 
components u and v as: 

U = ~ u + ~ y v ,  V = T h u + r l y v  (6) 

Hereafter, the symbol ̂ , which denotes the vector quantity divided by Jacobian J, may 
be omitted for simplicity without any confusion, unless a specific note is provided. In the 
case of Re->oo, Eqs.(1) reduce to the Euler equations. 

3. Numerical Procedure 
In our method of lines approach 1), the Navier-Stokes equations (1) are first dis- 

cretized by the conventional central finite-difference approximation as follows: 

at~-~-q" id' = - (Ei+I j  - Fi-l,i )/(2A~) - (Fij+I -Fid_ 1 )/(2At/) 
(7) 

+ (Ri+ 1/2,] - Ri-2/1 j )/(ReA~) + ( S i j  + 1/2- Si,]- 1/2 )/(ReArl) + D~ + Drl,  
where subscript i andj  denote the grid indexes such as q~j = q(iA~,jArl). In order to elimi- 
nate spurious oscillation and capture shock wave, the dissipative terms De and D n are added 
in the right hand side of Eq.(7). The dissipative terms used here are based on the second and 
fourth differences, which was first introduced by Jameson 5). The term can be written for ~- 
direction as: 

D~ = di+1/2'/ - di-ll2'/, (8) 

with the dissipative flux 

E (4) A 3 d/+1/2,/ =[ ( 2 ) A  i+1/2,/ ~(Jq) i'l,i]/(JZlt~) " ei+1/2 i ~ (Jq)/j - /+1/2,/ (9) 

Here de is forward difference operator, Ate is the certain time step specified later, and g2) and 
g4) are defined as 

£~+2) (4) = m a x ( 0  (D (4)- (2)_ (10) 1/2i = (-0(2)max ( Vi+lj,  v/~ ) ,  Ei+l/2, / , E/~l/2' / ) 

where o~ 2) and oS 4) are adaptive coefficients and v.. is obtained from the second difference of *,l 
pressure. 

In order to eliminate the uncertainties of adaptive coefficient and improve the spatial 
resolution of discontinuities, new dissipative terms are derived from the Yee's TVD 
scheme s) as follows: 

D { = R i+l/2,i ~i+1/2,/- Ri-1124 cI~i-112'/ ,, (11) 
where R is the matrix whose columns are eigenvectors of the Jacobian A = ~E/~q. The ele- 
ments of the ~ ÷ ~  denoted by ~ + ~  are 

m 1 m r a +  m m 
$i+1/2'/ = ~lg(ai+l/2'/)(g/d gi+li)- lg(a/+l/2'/+ ~+1/2'/) ~+1/2i, (12) 

with 
g'~ =S max [ O, rnin( SO~+l/2i , So~._1/2'/ ) ] , S = sign(tz~n.+l/2i) , (13) 

Here a is the eigenvalues of Jacobian A, and a is given by 

o~+1/2'/ = R[11/2~[ (Jq)i+li-(Jq)q]. (14) 

The detail descriptions of of the function ~and  ],can be found in the reference (6). 
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For a time stepping scheme, the rational Runge-Kutta (RRK)scheme of Wambec@ is 
used. The system of ordinary differential equations(7) can be rewritten as: 

dq = ~-*(~,) (15) 
dt 

Then the second order RRK scheme may be written in the following two stage form. 

gl = z~tW(-qn), g2 = Z~tW(q n +c2~1), 

g3 -- blgl -I-b2g2, (16) 

~n+, =~'n + [2g'l~l,g'3)- g'3~'bg'l)] / ~'3,g'3), 
where superscript n denotes the index of time steps and (g-~,~) denotes the scalar product of 
two vector~ and ~. An efficient second order scheme is given by the coefficients 

bl = 2 ,b2  = -1,c2 = 0.5 (17) 

A constant CFL number is imposed on all grid points, so that the time step At is determined 
locally as 

Atq = CN min(At~, Ate)q, (18) 
with 

2 2  = ( 1 / ( ~ V [ + ~ ) ) q .  (19) (At& = (a/ ul + (AtO/d 
Here C N is the CFL number to be given and c is the speed of sound. 

In order to accelerate the rate of convergence to a steady state solution, the residual 
averaging technique 5> is incorporated into the basic scheme. The final stage of the RRK 
scheme (16) can be written in the following form: 

q.n.+l = q~ + ,j r/d, (20) 

where r is the residual. In the residual averaging technique, 5) r may be replaced by the 
implicit average~ defined as: 

(1-e~4-e0~)r-~ = r/d, (21) 

where 52 is the second difference operator. The smoothing parameters e¢ and e may be 
obtained by 

Jl-[[ At l2l],emin)q,(eO)/d =max Jl-[[ At l2-1],emin}/d, (22) 
(e~)q = max/4L/,~At d / 4 L l ~ , , /  J 

where ~ = 1.25 and ~ = 0.2. 

4. Numerical Results 
Numerical experiments of the present scheme are carded out for hypersonic flows 

over a double ellipse and a double ellipsoid. At first, numerical solutions of two-dimen- 
sional flows over a double ellipse are obtained at free stream Mach numbers of 25 and an 
angle of attack of 30*. The configuration of the double ellipse is defined by: 

(~)2 + (1.~)2 = 1 .  x < 0 ,  

~.__~)2 + ~.___~)2 = 1 x <O,y >0,  (23) 

x = 2 . 5 , y = - 1 . 5  x > 0  
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Numerical results for inviscid and viscous hypersonic equilibrium flows are shown in 
Fig. 1 which displays the iso-Mach number lines for the flow over the double ellipse at M~= 
25 and o~ = 30*. The free stream conditions are chosen corresponding to the standard atmos- 
phere at 75 km (e~ =2.52Pa andT~ =205.3K ). The local Mach numbers are estimated by 
local velocities and frozen sound speeds. The figure demonstrates the reduction of the 
stand-off distance of the shock wave compared with the perfect gas flows. Fig.2 shows 
comparison of the computed temperature distribution along the surface for the non-equilib- 
rium gas. The present result for 17 reaction model coincides with those of the other contrib- 
uters. The reduction of temperature is evident for the case of non-equilibrium gas. 

5. Conclusions 

The rational Runge-Kutta scheme for the compressible Navier-Stokes equations is 

applied to the simulation of hypersonic real gas flows for reentry problems. The central 

difference scheme with the artificial dissipation models gives the converged solutions even 

at a high Mach number of 25. The facilities of the rational Runge-Kutta scheme for chemi- 

cally non-equilibrium reactive flows are also demonstrated. The rational Runge-Kutta 

scheme is confirmed to be reliable even for the analyses of hypersonic reacting flows. 
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a) i n v i s c i d  f l o w  b) v i s c o u s  f l o w  

Fig. 1 I s o - v a l u e  c o n t o u r s  f o r  M a c h  N u m b e r ,  A M  = 0 .2  ( e q u i l i b r i u m  ) 

1 5 0 0 0  . . . . . . . . . .  '---- 17 reactions.~ 

",,. --- 3 reactions.~ 
" -. ~ ~ + Vos et al. 

- _  ~ o Botta et a l . .~  
. .  ~ - ~  . . . .  o Mallet et a l .4  lO00C . . . . .  -----~--:a.~ 

I i ii i i i iii::i: 
-6,0 -4,0 -2.0 0.0 2.0 

x/L 

Fig.2 T e m p e r a t u r e  d i s t r i bu t ion  

( n o n - e q u i l i b r i u m  ) 
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N O Z Z L E  F L O W  C A L C U L A T I O N S  W I T H  GAS I N J E C T I O N S  U S I N G  
I N V I S C I D  A N D  V I S C O U S  A P P R O A C H E S  

C.Weiland, G.Hartmann, W.SchrSder, S.Menne 

Messerschmitt-BSlkow-Blohm AG, Space Group, 8000 Munich 80, Germany 

INTROD UCTION 

The design of classical rocket motor nozzles is optimized with respect to thrust and length of 
construction. This task has been done in the past with sufficient success using the method 
of characteristics. Advanced nozzle concepts applying new materials (e.g. fiber reinforced 
ceramics, carbon/carbon, etc.) in the expansion part of the nozzle require a film cooling 
procedure of the wall in order to govern the thermal loads. These new concepts make 
it necessary to apply modern computational methods for the determination of the nozzle 
performance, film effectiveness, heat fluxes and wall temperatures. To establish the film a 
turbine exhaust gas (TEG) is tangentially injected to the nozzle contour in order to utilize 
the cooling effect of the gas and to increase the thrust. In general the composition of the gas 
coming from the combustion chamber and the turbine exhaust gas are completely different. 
Due to the high temperatures of the gases real gas effects have to be taken into account 
either in thermodynamic equilibrium or non-equilibrium .If different gases interact with each 
other the numerical description of such flow fields is complicated. In an inviscid approach 
(solution of the Euler equations) a contact discontinuity occurs whose location is a proiri 
not known. One way to overcome this problem consists in establishing a fitting procedure. 
This strategy will be followed here and examples will be discussed in this paper. 
However in reality there exist a mixing zone (viscous approach) whose size and extension 
depends on the turbulent diffusion and the mass diffusion. Since the behaviour of this zone 
determines the effectiveness of the film cooling it is highly important to predict this zone 
very carefully. A Navier-Stokes method is extended and adjusted to this kind of flows where 
the influence on thrust and film effectiveness of laminar and turbulent boundary and mixing 
layers will be investigated. 

THERMODYNAMIC FORMULATION 

The Euler [1-3] and Navier-Stokes [4-6] methods are formulated for perfect gas, real 
gas in thermodynamic equilibrium and non-equilibrium as well. For equilibrium 
real gas the equation of state in the forms p(p,e) and T(p,e) and the derivatives 

( ~ )~, ( ~ )~, ( OT OT 0~ ~p )~, ( ~ )p are needed and implemented in the Euler [1] and Navier- 

Stokes [5] methods, where p, p, s and T are pressure, density, internal energy and tempera- 
ture. For air the equation of state can be taken from Mollier-fit routines. For other mixtures 
of gases, for example hydrogen/oxygen, the equation of state is calculated by the computer 
code of Gorden & McBride [7] which deals with the equilibrium chemical kinetics of combus- 
tion. For gases in chemical non-equilibrium the governing equations have to be completely 
rearranged, adding the continuity equations for the species concentrations and formulating 
the relations for the transport mechanisms (viscosity, heat conduction, thermal and mass 
diffusions). Up to now Park's chemical model of air is used, while the implementation of a 
suitable hydrogen/oxygen model is underway. The inviscid method is described in [3] and 
the viscous one in [6]. 
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FL UIDDYNAMIC FORMULATION 

Euler Equations 

The basic equations governing the inviscid flowfield describe the conservation of mass, mo- 
mentum and energy. This system is closed by suitable relations between the thermodynamic 
variables pressure, density, temperature, species concentrations and internal energy. For dis- 
cretization purposes the basic equations are reformulated quasi-conservatively, which means 
that a quasi-linear form using conservative variables is employed. The 3acobian matrices are 
split due to an eigenvalne evaluation (split-matrix method) and are discretized by a fmite 
difference approach. A third-order upwind biased difference formula is used in space. The 
time integration is carried out by a three step Runge-Kutta scheme which leads to a second- 
order accurate scheme. Discontinuities like bow shocks and shear layers can be fitted. This 
makes it necessary to consider time dependent grids which move with the discontinuities 
during the transient to steady state (for steady freestream and boundary conditions) [1-3]. 

Navier-Stokes Equations 

For perfect and equilibrium real gas applications a finite volume approach of the Navier- 
stokes equations is used. The inviscid fluxes are discretised by a symmetric TVD scheme 
with Roe's approximate Riemann solver, while a centered differencing is employed for the 
viscous fluxes. The final set of algebraic equations is solved by a symmetric point Ganss- 
Seidel relaxation scheme [5]. The non-equilibrium Navier-Stokes method is based on the 
Euler scheme of Ref.[3] where the related viscous terms are added [6]. 

Boundary Conditions 

For subsonic and supersonic inflow and outflow boundaries characteristic compatibility re- 
lations based on one-dimensional characteristic equations are employed. Usually, near the 
wall boundary (inviscid flow) the flow is directed towards the wall and consequently all 
characteristics except one are utilized together with the kinematic wall condition for the 
determination of the variables at the wall. 
As mentioned earlier in case of interaction of various gases with different compositions and 
thermodynamic states contact surfaces or shear layers arise (inviscid flow) which separate 
the regions of different gases. The location of this contact surface is a priori not known and 
is part of the solution. For the calculations (inviscid) discussed in this paper the contact 
discontinuity is fitted by aligning a coordinate surface to the discontinuity using the suitable 
one-dimensional characteristic equations on both sides and utilizing the condition that the 
pressure has to be continuous. This procedure is described in detail in [2]. 
For viscous flows the usual wall boundary conditions are used. At inflow boundaries suitable 
boundary layer profiles are prescribed. 

COMPARISON OF RESULTS 

Euler solutions for nozzle flows with TEG injection are shown in Figs.1 and 2. A hydro- 
gen/oxygen gas mixture for both the main stream (mi~(LOX/H2)  = 7.09) and the injected 
stream (mi~(LOX/H2)  = 0.93) was considered. If the static pressure of the main stream 
coincides with the one of the injected gas (at the location of injection) the flow is called 
matched, otherwise unmatched. Fig. 1 shows the matched case and Fig. 2 the unmatched 
case where the static pressure of the injected gas has twice the value of the combustor gas. In 
the latter case a pressure wave arises which can clearly be identified, and the location of the 
shear layer differs from that of the matched case. The influence of chemical non-equilibrium 
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effects compared to equilibrium effects are considered in Figs. 3-6. The Mach number pat- 
terns show only small differences but the evaluation of the species concentrations reveals 
that in the equilibrium case after a modest distance from the throat oxygen and nitrogen are 
completely recombined and NO does not exist, while in non-equilibrium even at the nozzle 
exit the gas is still in non-equilibrium (Figs. 5-6). This leads to a considerable reduction 
in thrust (Feq~,~l~i,~m = 855[KN] , F,~ . . . .  quillhvlum = 836[KN]). Navier-stokes solutions 
(equilibrium real gas,air) for laminar and turbulent boundary layers are considered in Figs. 
7-8. As expected the boundary is thicker in the turbulent case but this affects only a little 
the Mach number distribution outside the boundary layer and the thrust decreases from 
FZam~na~ = 822[KN ] to F,,,~b,~ze,~ t = 818[KN]. Viscous solutions are shown for the nozzle 
flow with turbine exhaust gases in the Figs.9-13. The total temperature for the combustor 
gas was To = 3800K and for the TEG gas To = 600K. Perfect gas is assumed and the 
effect of either laminar or turbulent (Baldwin-Lomax model) flow on the development of the 
mixing layer is investigated. Figs. 9-10 show Mach number distributions for both cases. In 
the turbulent case a well developed mixing zone can be identified which touches the nozzle 
wall and leads to an increase of the adiabatic wall temperature (Fig.13). On the contrary 
there is only a narrow extension of the laminar mixing zone (Fig.12). The increase of the 
temperature distribution at the wall beyond the location of the TEG injection is a measure 
for the film effectiveness. The prediction of this temperature distribution is sensitive to 
the turbulent model applied, the consideration of mass diffusion and the high temperature 
effects. These phenomena will be treated in the future. 
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FIG.  1 Euier  solution equil ibrium real  gas; FIG.  3 Euier e q u i l i b r i u m  real gas, a i r  flow, Mach 
combustion gas  (Miz(LOX/Hs) = 7.09) ; number  contours MM+, = 0.231, MMaffi = 7.01, A M  = 0.1 
T E G  injection (Miz(LOX/H~) = 0.93); 
injection m a t c h e d  pressure 1 .1oS[pa ]  

FIG.  4 Euier  n o n - e q u i l i b r l u m  real gas, air  flow, Maeh 

FIG.  2 Euler  solution equil ibrium real gas; number contours MMI,  = 0.225, ~/IMa ~ = 7.06, A M  = 0.1 

combustion gas  (Miz(LOX/H~) = 7.09); 
T E G  injection (Miz(LOX/Hs) = 0.93); 
injection m i s m a t c h e d  pressure 2 . 1 0 S [ p a ]  

FIG.  7 Navier-Stokes solution; real  gas equil ibrium; l a m i n a r  
Mach number  contours MM~, = 0., MM~= = 7.0, A M  = 0.05 
(120 * 190) cells 

FIG.  5 Euier e q u i l i b r i u m  real  gas ,air  flow, Yo~ 
concentration YoM~ +" = 0.192, YoM2 "z = 0.233, AYo2 = 0.0005 

,ut on+r+  +as equi brlum+turbul+nt 
Mach nun~ber contours MMin = 0., MMaffi = 7.0, A M  = 0.05 
(120 * 190) cells FIG.  6 Euier n o n - e q u i l i b r l u m  real gas ,air flow, Yo~ 

concentration YoM2 +" = 0.191, Y ~ ' ~  = 0.208, AYo~ = 0.0005 
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FIGS.  9 - 14 
Nozzle flows wi th  tu rb ine  exhaus t  gas  inject ion ( T E G )  

perfect  gas ,7  = 1.17, adiabat ic ,  Navier-Stokes,  R e  = 5.26 * 10 ~ 

FIG.  9 Mach n u m b e r  contours ,  l a m i n a r  
M,,.. = 0., M,~.ffi = 5.5,  A M  = 0 .05  

FIG.  1 0  Mach  n u m b e r  contours ,  t u r b u l e n t  
M~i. = 0 . , M . ~ . =  = 5.5,  A M  = 0 .05  

Injection of TEG ~.~ j ~  

FIG. 11 Detail of computational grid; 
2 blocks; 200 * 120 and 79 * 50 cells 
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A G O D U N O V - T Y P E  S C H E M E  U S I N G  S T R E A M L I N E  M E S H E S  
F O R  S T E A D Y  S U P E R S O N I C  A E R O D Y N A M I C S  

J. Y.  Y a n g  and  C. A .  H s u  

Institute of Applied Mechanics, National Taiwan University 
Taipei, Taiwan, R.O.C. 

1. I n t r o d u c t i o n  

In this paper, motivated by the recent work on new Lagrangian method developed 
by Hui and Lob [1,2], we describe a streamline Godunov method for solving the steady 
Euler equations in supersonic flow in the Eulerian formulation. In contrast to the conven- 
tional Eulerian formulation, in [1] a stream function and a new Lagrangian time are used 
as the independent variables and the steady Euler equations can be cast into hyperbolic 
conservation law form in this new Lagrangian formulation. Thus, many well-established 
shock capturing schemes such as Godunov method [3] can be employed to solve them. This 
newly developed Lagrangian method is noticeable for its crisp resolution of the slip lines 
when compared with results obtained using Eulerian formulation by Glas and Wardlaw [4]. 
A flux difference splitting method has also been given by Pandolfl [5] for solving steady 
supersonic flows. In [4] and [5], regular meshes in the Cartesian coordinates was used. In 
search of the reason why the Godunov method in Eulerian formulation does not contain the 
good property of slip line resolution as in the new Lagrangian method, we found that  by 
using streamline mesh system one can share this desirable features of the new Lagrangian 
method with Eulerian formulation. Our work is akin to [4] but with the streamline and 
a time-like coordinate as the control volumes. The control volumes or cells which are 
composed of streamlines and constant x lines are constructed during each marching step 
and used as computational meshes. These streamline meshes are expected to share the 
Lagrangian features of the adaptive flow nature and have the advantage of simplifying the 
implementation of the Godunov scheme. A second order extension using a MUSCL-type 
approach [6] is also presented. The essentially nonoscillatory (ENO) interpolation of Harten 
and Osher [7] is used for the top and bot tom states at the cell interfaces to achieve higher 
order representations. 

2. H y p e r b o l i c  C o n s e r v a t i o n  E q u a t i o n s  of  S t e a d y  Supe r son i c  F lows  

The Euler equations of motion of an inviscid, non-heat conducting fluid for steady 
two-dimensional flows in conservation form can be written as 

E = + F y - - - 0  (1) 

where E = (pu, pu 2 + p, puv,  p u H )  r and F = (pv, puv,  pv 2 + p, p v H )  T are flux vectors. 
Here, x and y are the physical coordinates, u and v are the corresponding components of 
the velocity, p is the density, p is the pressure, and H is the total enthalpy per unit mass. 
For a polytropic gas, the pressure is related to other fluid properties by the equation of 
s t a t e p = p C ' / - 1 ) C H - Z  2 q2 u2 v 2 sq )/ ' / ,  where = + and ' / i s  the ratio of specific heats. 

For supersonic flow, the system (1) is hyperbolic and has eigenvalues 

~ 0 =  v multiplicity 2, ~ ± = u v = t : a v ~ - a  2 u2 - a 2  (2) 

where a : ( ' /p /p) l /2  is the speed of sound. A characteristic whose slope is )~0 is a streamline, 
while one whose slope is ,~+ is a Mach line. 

Along Mach lines C~_ : dd~ffi = tan(0 =t= #) 

dp 
pq2 tan/J 

-t- d8 = 0 (3a, b) 
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Along streamlines Co : ~ = tan 0 dz 

d p _  1 dq 2 2 
-- (3c, d) 

dp a2' dp p 

where 0 denotes the angle between the streamlines and the free stream direction x and 
# the local Mach angle s in - l (1 /M) .  The Mach number M is defined by M = q/a. For 
a perfect gas, it can be explicitly integrated to obtain the Riemann invariants in terms 
of the Prandtl-Meyer function. The simplicity of form of the characteristic equations as 
expressed in terms of dp and d0 is to be emphasized. That the quantities p and 0 should be 
considered as the basic variables is related to the fact that  it is these quantities which must 
be matched across a slip line. For a given supersonic flow, if the streamlines can be used as 
coordinate lines, then the description of flow physics becomes rather simple and natural. 
One such example is the particularly elegant form of equations in natural coordinates. In 
the present work, we shall take advantage of this observation and using streamlines and 
constant coordinate z lines as grid lines for the control volumes or cells used in the Godunov 
method. This will not only simplify the Godunov algorithm but also enable the excellent 
resolution of slip lines without smearing. 

3. T h e  l~ iemann  P r o b l e m  of  S t e a d y  Supe r son ic  F l o w  

The Riemann problem for two-dimensional steady supersonic flow is specified as the 
system (1) of hyperbolic conservation laws subject to the initial condition 

QCz= xo,y) = ~ Q:r,y > y,~ (4) 
( Qs ,y  < y,,, 

where the flow states are given at the initial data line x = x0 and QT and QB denote the 
top and bot tom states. 

The solution to the Riemann problem is self-similar in the variable ( y -  y , , ) / ( x -  x0) 
and consists of three types of elementary waves, namely, the oblique shock waves (sh), the 
Prandtl-Meyer expansions (P-M) and the slip lines (sl) separated by uniform regions in 
between. Denote the solution as R [ ( y -  y ,~ ) / ( x -  Xo);Q~,Qr]. These elementary waves 
can be used to construct a solution to the Riemann problem for two-dimensional flow. For 
details, see [41 and [11 . 

4. A G o d u n o v  M e t h o d  Us ing  S t r e a m l i n e  Meshes  

The computational mesh is illustrated in Fig. 1. The marching direction is z and the 
mesh is oriented such that  z~ : constant = x" for all j .  Here n and j refer to the marching 
step number and cell number, respectively. The marching distance, Ax ~ = z ~+1 - z ~, is 
chosen to satisfy the usual Courant-Friedrichs-Lewy (CFL) linear stability condition. The 
computational domain in z - y plane is divided into a system of control volumes or cells 
which in the y-direction are centered at y~. and have a height of Aye = Y~+I z -- Y"* 1 z 

The difference equations for the j t h  zone are obtained by integrating Eq.(1) over the 
j t h  cell in Fig. 1 and applying the divergence theorem to get 

A -  
E? +I = Ee ~Y~" Ax" Gn 

, Ay~-I-1 Ay?-l-1 ( 3"+1/2 - -  a ~ - l / 2 ) ,  C 5) 

where the numerical flux vector G~+I/~ is defined as 

Here for any quantity f ,  

N = F " + 1 / 2  - s" ]7~-}'1/2 Ca'+1/2 y+1/2 j+1/2 ~j-l-1/2 " 

1 L yi~ 1/2 f(x'*, y) dy, 
/? = Ay~ . ._ , .  

(6) 

(7) 
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is the cell-average of f and 

, . + 1 / 2  1 L "~+* 
-- " + y+I12 ,i+1/2 A=-  = SC=,y;:+I/2 8- . ( = - = " ) ) d = ,  Cs) 

where 
8~+~1! = (Y~++:/2 - ! # 7 + , / 2 ) / A z ' .  (9) 

In the first-order Godunov scheme the j t h  cell average, Q~, at marching step n is considered 

as constant within that  cell and the flux F~.++(I2-8~+ i/~. E~?+(12 along the interface between 
the j t h  cell and the (j  + 1)th cell from marching step n to n + 1 is to be obtained from 

n X n . ~ ~ n the self-similar solution R[(y - Yj+~/2)/( - x;),Qy ,Qi+~] at y = Yj'+l/2 to the Riemann 

problem formed by two adjacent piecewise constant flow states Q~ and Q~+I, i.e., with 
Q~ = QB and Q1~+1 = Qr and use the procedure described in Section 3. 

The first order Godunov scheme given above can be upgraded to higher order accuracy. 
Here, we present a new MUSCL-type [6] second order scheme using an essentially nonoscil- 
latory (ENO) interpolation [7] to achieve high order accurate values of the cell interface 
(see also [8]). The solution algorithm may be divided into a number of steps. These are 

Step 1. The "decoding" of E~ to obtain Q~. Let 

X 2 = 3'2 + (3'2 _ 1)(E~ - 2E, E4)/E~ 

Then 

3" + x E2 E3/E1 p E1/u, p= E2 uE~. (10) U - -  - -  , "0 = , = 

3 ' + 1  E1 

Step 2. Generation of streamline meshes. To start the calculation, we need grid points 
at step n + 1 to build up computational cells. These are carried out by defining 

r~ 

(11) 

V9 V" 
__ y+1 - -  ' + ~ J / 2 .  8;%,/~ = (u7 . (12) 

Step 3. Second order accurate representation of values of cell interfaces. We first use 
ENO interpolation to get more accurate values at interfaces as 

with 

. _  1#. . 1~. EL~=a,."+ ~ j, ~."_+,=E~-~ ;, (13) 

k~ = m[A+.E,~ - f ~ ( A _ A + E ~ , A + A + E ~ y ) , A _ E ~  + f ~ ( A + A _ E ~ , A _ A _ E ~ ) ]  (14) 

where A± Ey = --b(Ej:t: 1 - E l ) ,  denote the usual forward and backward difference operators. 
The limiter functions m and ~ are defined in [7]. Then we advance E~I/2"± to step n +  1/2 
as follows: 

--- Az F - Ei+}  = ~ i+}  - ~ [  (E."+}) - F(E?_+})], (15a) 

a x  n -  ~ _  ~ = E;"+} - ~ [ F C E ; + ~  - FCE:V0] .  (15b) 
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If f = 0, one has a second order TVD scheme [9], and if f = 1/2, one has a uniformly 
second order ENO scheme [7]. With E~±1/2, one can decode it and obtain Qj±I/2" 

Step 4. Obtain the self-similar solution R y - y~. x - z"  ;--+ - - -  . . . . . . . . .  [( 3+1/2) / (  ~'+1/2) Q~+l/2,Qi+l/2] 
by solving ~ne ~mmann problem, The solution state is used to evaluate the interface fluxes 
Ej.+II2 F~+il2 . ~ . +1/2 and ~'+1/2 along (y - y~+l/Z)/(x - zg.+l/2 ) = S3.+1/2. Finally, the solutions at 
step n + 1 can be obta ined from Eq. (5). 

At this stage the numerical procedure is completed. To march forward further in x, 
one goes back to Step I and repeats Step 1-4. 

5. Numerical Results 

We first consider an initial value Riemann problem. It is formed by the confluence of 
two parallel supersonic streams at Y0 -- 0.5 with different states. The initial conditions are 
given by 

Qr -- (pr,pT,MT,ST) = (0.5,0.25,4.0,0.0°),y > Yo, 

Q -- QB = (pB,pB,MB,OB) = (1.0, 1.0,2.4,0.0°),y _< Y0. 

This is a case considered by Glaz and Wardlaw [4]. Here we use 100 cells and A y ~ ,  = 0.01. 
Numerical results using Cartesian and streamline meshes for the flow properties at section 
A - A' (x = 0.5) are shown in Fig. 2 along with the exact solution (solid line) which was 
obtained using the Riemann solver. Both mesh systems indicate good resolutions of the 
oblique shock, but the streamline mesh system has much hetter resolution of the slip line. 
This may be attributed to the streamline meshes, which follow the movement of the fluid 
particles. 

We also consider supersonic flows over two-dimensional profiles. In Fig. 3, the flow 
fields around a symmetric circular-arc airfoil in a hypersonic flow with M~ = 8.0 and 
0 ° angle of attack are shown. The leading edge and trailing edge oblique shock waves 
and the Mach waves emanating from the surface are all crisply resolved. The grid lines 
(particle traces) clearly indicates that the computational mesh follows exactly the particle 
movement even when it crosses a shock wave. The initial mesh distribution is stretched 
with Ay,,~, = 0.001. 

Computed results for supersonic flow past a symmetric double-wedge airfoil with 10 ° 
wedge angle are given in Fig. 4 for freestream Mach number Moo = 3.0 and 0 ° angle 
of attack. The leading edge oblique shocks, the Prandtl-Meyer expansion fans and the 
trailing edge oblique shocks are all crisply represented, and the flow adaptive feature is 
easily illuminated via the streamlines (grid lines). 
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Fig. 2. A comparison of results using stream- 
line mesh (squares) and regular mesh (cir- 
cles). 
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Fig. 3. Steady hypersonic flow past a circular 
arc airfoil  (M=¢ = 8.0). (a) pressure  contours ,  
(b) grid lines. 
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Fig. 4. Steady supersonic flow past a double- 
wedge airfoil (M~ = 3.0). (a) pressure con- 
tours, (b) grid lines. 
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I N T R O D U C T I O N  

It is shown that the acoustics, Maxwell and Schroedinger equations can each be written as a set 
of first-order partial differential equations in hyperbolic conservation-law form. As a consequence, 
the well-developed CFD algorithms for the solution of compressible Euler equations can be applied 
for the numerical solution of these equations. However, for wave propagation problems, the re- 
quirements of accuracy are substantially different than that for aerodynamics. In the present work, 
the governing equations are solved both in t ime- and frequency-domain using the method of lines 
which decouples the temporal terms from spatial terms. In frequency domain, a pseudo-time vari- 
able is introduced. An explicit node-based finite-volume algorithm is developed wherein the spatial 
terms are dlscretized using a fourth-order compact difference operator while the time-integration is 
carried out using a four-stage explicit/point-implicit Runge-Kutta time-stepping scheme. A sixth- 
order compact dissipation operator is added to stabilize the algorithm. A novel analytic treatment 
is developed for the implementation of the far-field radiation boundary condition. It is shown that 
this boundary condition provides an excellent approximation to exact integral boundary condition. 

G O V E R N I N G  E Q U A T I O N S  

In two dimensions, the acoustics, Maxwell and Schroedinger equations can be expressed in conservation- 
law form as follow: 

0 q  OF OG 
0-Y + ~ + ~ = s,  (1) 

where Q, F, G and S are defined below. 

Acoust ics  Equa t ions  
Let (uo,vo) denote the steady mean flow velocity components and ~, i~, (~,g) denote the acous- 
tic perturbation density, pressure and velocity components, respectively. Then for the linearized 
compressible Euler equations (acoustic equations), we can write [1], 

q = ~ , r  = = o [ 2 ~  - =0~] + ~ ~0[~ - ,0~] + ~ , 0  
, 0 [ @ -  =0~] + ~=0  , C = , 012~- ,0~1  + ~ , S = 0. (2) 

A state equation is required for closure and is of the form, 

1 
v0(2~ - vo~)]} = (~ - 1) { ~  - ~ [~0(2~ - ~0~) + 

The variables Fu, pv, pe and ~ are defined as, 

~'~ = P0~ + ~u0 ~ = p0~ + ~vo ph = ~ + i~ 

1This research was conducted under the McDonnell Douglas Independent Research and Development Program. 

370 



1 . 2 2" 
i~ + pouo~ + povo~ + ~P[~o + %)" P'e = 7 -  1 

Maxwel l  Equa t ions  
Let D denote the electric field displacement and B the magnetic field induction. For transverse 
electric (TE) polarization [2], 

q =  Dx , F =  , C =  - , S = 0 ,  (3) 
Otl  B : / #  0 / #  

where # and e represent the permeability and permittivity of the homogeneous medium, respectively. 
Similarly, Q, F, G and S can be written for transverse magnetic (TM) polarization. 

Schroed inger  Equa t ion  
• 0~b For the wave function ¢ ,  the Schroedinger equation can be written as [3], zh-~ = / / ¢ ,  where 

f I  = non-relativistic ttamiltonian in Coulomb-variant form 
- ~+ ~ ( h . ~ ) - #  °'A ~ + U ( x , y ) ,  e = electron charge, 

Urn 

/~ = momentum operator = (h/ i)V,  m = electron mass, 
A = vector potential (V.  A = 0, homogeneous field), h = h / 2 7 r ,  

U = scalar potential, h = Plank's constant. 

Letting ¢ = a e x p ( i f l ) ,  it can be shown after considerable algebraic manipulation that, 

Q =  , F = p u  2 , G = p u v  , S = P o ^ - -  v .  , (4) 
p v  p v u  p v  ~ (fu 

h:' r ~  vfze2_l where p = a u =probability density, V = ( u , v )  = (/~/m)Vfl, and 0 = U - ~ L v p - =o +" 

F requency  D o m a i n  Formula t ion  
Since the governing equations are linear, an assumption that the incident field is harmonic in time 
with a frequency w will result in a time--dependent total-field that will also be harmonic with 
frequency w. Thus the governing equations can be recast in frequency domain by the use of the 
single-frequency assumption, q = ~({~(~, y ) e - i ~ t ) ,  where tilde denotes a complex quantity and 
denotes the real part. 

By applying the single-frequency assumption, and by recasting the equations in scattered form 
with pseudo-time difference, the governing equations become, 

at--:- + ~ + ~ - i , ,& ,  = ~, (5) 

where (~, F and (~ contain the complex coefficients of Q, F and G. The source term S is defined 

= s + i~,(~+ OP+ 0~,  
Oz Oy " (6) 

The total-field is cast as a sum of the known incident value and the scattered value, (~ = (~i + (~+. 
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B o u n d a r y  C o n d i t i o n s  
For acoustic scattering from a rigid stationary wall, the inviscid flow boundary condition, ft.  6 = 0, 
is applied where fi is composed of both incident and scattered components, and 6 is a unit normal 
to the surface. In terms of scattered quantities, the boundary conditions becomes fi, • 6 = - i l l  • 6, 
where fii is the given incident complex velocity. 

For electromagnetic scattering from a perfectly conducting surface, the boundary condition is 
h x E = 0 where E is the total electric field intensity. In terms of scattered q~uantities in the 
frequency domain, the boundary conditions becomes ~ x 1~, = - 6  x ]~i, where El is the known 
incident electric field intensity. 

For the scattering of a beam of electrons in the sphericMly symmetric potential field U(r) of an 
atom, the boundary condition is p(r = 0) = 0. 

Far  Fie ld  C o n d i t i o n s  
A correct mathematical model would extend the domain to infinity and would require all scattered 
quantities to vanish. This is impractical numerically, and a set of well-posed boundary conditions 
must be placed on a finite domain. 

For acoustic and electromagnetic scattering, the current methodology uses the radiation bound- 
ary conditions based on that  of Giles [4]. 

The boundary condition is, in theory, accurate to O(I/w) 4 where I is the Fourier decomposed 
wave number in the azimuthM direction; it has been found to be more effective than the commonly 
used one-dimensional radiation condition or the characteristic condition. 

For the Schroedinger equation, the conditions V~(r0,0) = ~ / ~ ,  and V0(ro, 0) = 0 are applied 
at the outer boundary of the computational domain, where Ek is the kinetic energy of the scattered 
beam of electrons, and r0 is the range of the atomic field. 

N U M E R I C A L  M E T H O D  

Spa t i a l  D i s c r e t i z a t i o n  
The set of weakly conservative governing equations (1) or (5) is solved numerically using a finite- 
volume node-based scheme [1]. The physical domain in (z ,y)  is mapped to the computational 
domain (~, 7/) to allow for arbitrarily shaped bodies. The semi-discrete form of the method can be 
written as, 

~ J Q i j  + ~ r l j  "t- #~#, n~ij -- iwJQq = JSij + Dij. (7) 

where D is the added dissipation term defined as, 

and { is the time step when the CFL number, cq, is 1. A~ and &*/are defined to be 1, and hence 
have been omitted. The vectors F t and G ~ are the curvilinear flux vectors and are defined as, 
F ~ = F y ¢ -  Gz¢, and G ~ = -Fy~ + Gz¢. d is the determinant of the metric tensor, d = x~y n - z n V  ~. 
• and # are the standard difference and averaging operators. The discretized form of equation (1), 
is the same as (7) except that  - iwdQ~j is dropped and fi is replaced by S. 

The spatial discretizatlon in 7/ direction is second-order accurate for a smooth grid, the discretiza- 
tion in ~ direction, however, is based on the classical Pad6 scheme and is fourth-order accurate. In 
practice, the accuracy of the Pad6 scheme has been shown to be significantly higher than that  of 
the standard central differencing [1, 2]. The resolution of second-order central differencing with 20 
points per wavelength is matched by compact differencing with roughly 8 points per wavelength. 
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T i m e  In t eg ra t i on  
A four stage R.unge-Kutta scheme is used to integrate the governing equations (1) in real time and 
(5) in the pseudo-time plane. The integration method is point implicit for the real-time term - i toQ 
to alleviate the stiffness for large values of to [2]. 

For the current two-dimensional system of equations with dissipation, the time integration is 
computed as follows, 

o k Atlj ,Rk_ 1 DO s,.(q," j  - % )  = - o ,  ' - y - t  ,~ - , j )  k = 1 ,4  (8) 

q . + l  = q,~ 
t . /  

where si : 1 + a i w A t  and R/j is the discretized form of the sum of the spatial fluxes, real time 
term and source term. Dij  is the dissipation term described previously. A single evaluation of the 
dissipative terms is required and the scheme is stable provided that the CFL number, tri, does not 
exceed 2v/2 regardless of the size of to [2]. 

RESULTS 

First, the accuracy and efficiency of the algorithm was evaluated by computing the acoustic ra- 
diation from an oscillating cylinder. It was found that the compact scheme requires eight grid 
points per wavelength in contrast to the second-order scheme which requires 9.0 grid points for 
comparable accuracy. As shown in Fig. 1, the error using second-order central-differencing at 
roughly 20 points/wavelength (log(dr) ~ -3 )  is matched by compact differencing at only roughly 
8 points/wavelength (log(dr) ~ -2) .  Furthermore, the explicit/point-implicit algorithm is very 
efficient. As shown in Fig. 2, in 500 iterations, four orders of magnitude reduction in residual are 
obtained, versus a single order of magnitude reduction obtained using a four-stage explicit Runge- 
Kutta scheme. The new farfield boundary treatment reduces the cpu and memory requirements 
by an order of magnitude. As shown in Fig. 3(a), no numerical reflection was observed in the 
calculations even by bringing the farfield boundary to a distance of 0.02 diameters from the surface 
of the cylinder. Accurate solutions were obtained on a 66 x 10 grid in 24 cpu seconds on a CRAY 
X-MP with six orders of magnitude reduction in residuals as shown in Fig. 3(b). 

Only a few selected results for acoustic and electromagnetic scattering from complex two- 
dimensional objects are reported here. For the Schroedinger equation, the method has been vali- 
dated for the case of elastic scattering of a beam of electrons by a hydrogen atom in ground state. 
For acoustic and F,M scattering, incident waves of the form Ae ik= were assumed, where k = to/c0 
and the complex constant A was set to 1. Combined with the time harmonic factor e-lt°t~ the 
incident waves correspond to plane waves which travel in the positive x direction. 

Acous t ic  Sca t t e r ing  by a N A C A 0 0 1 2  Airfoil  
We consider a NACA0012 airfoil at zero angle of attack in a steady M0 = 3.0 flow. A plane 
acoustic wave of the form/~i = ei(kz-'t) where k = to~leo(1 + M0)] impinges on the airfoil. Since the 
thickness of the airfoil is only 3% of the incident wavelength, the scattering effects were expected 
to be small. The blunt leading edge accounts for most of the scattering and emulates a compact 
scatterer radiating sound in all directions. Fig. 4(a) shows contours of the amplitude of acoustic 
pressure. The region ahead of the airfoil exhibits the interference fringes from the interaction of 
the incident wave with scattered wave. Fig. 4(b) shows the amplitude of the scattered wave at the 
farfield using the current method and the integral equation formulation using the Green's function. 
The agreement is excellent. 
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T E  Sca t te r ing  by an Ogive 
The scattering of a TP, electromagnetic wave by a perfectly conducting ogive is computed for 
c/A = 8, and t/A = 2, where e and t are the chordlength and thickness of the ogive, respectively. 
Fig. 5(a) shows lines of constant modulus of the scattered magnetic field intensity. As shown in Fig. 
5(b), excellent agreement is obtained for the computed bistatic radar cross section (ROS) between 
the present method and that obtained using the method of moments (MOM). Again, the farfield 
boundary is only at a distance of 1.2 times the chord from the center of the ogive. 

For several other examples and details, the reader is referred to [1] and [2]. 
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implicit Runge-KuUa time-integration. 
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2-D STUDIES OF THE MULTI-WAVELENGTH 
PLANAR AND SPHERICAL RAYLEIGH-TAYLOR INSTABILITY 
WITH AN AUTOMATICALLY REZONED LAGRANGIAN CODE 

S. Atzeni and A. Guerrieri* 

Associazione EURATOM-ENEA suUa Fusione 
Centro Ricerche Energia Frascati 

C.P. 65 - 00044 Frascati (Roma) - Italy 

1. INTRODUCTION 

The Rayleigh-Taylor instability (RTI) [ 1] plays an important role in several physical 
problems, including explosive stages of stellar evolution and inertial conf'mement fusion 
(ICF) [2]. In these cases, understanding the non linear evolution of multi-wavelength 
perturbation and the induced turbulent mixing [3] is essential. Simulation of such processes 
requires the capability of following the evolution of multimaterial systems, undergoing 
strong compression and/or expansion and, of course, being distorted by the instability 
itself. The substantial volume variation occurring in ICF motivates the preference given to 
Lagrangian codes for the study of these problems [4], but in multi-dimensional geometry 
rezoning techniques need being introduced, to deal with the mesh distortion caused by the 
unstable fluid motion. 

In this paper we describe a discrete rezoning technique, its implementation in an ICF 
code, and its application to the study of the 2-D RTI, in both planar and spherical 
geometry. The method has been designed to fulfil the following goals: 1) to preserve as 
much as possible such features of the Lagrangian scheme, as "mass resolution", boundary 
tracking, low level diffusion; 2) to allow in principle the code to simulate any fluid motion; 
and 3) to be fully automatic, namely that no user intervention be required while running a 
problem. The proposed technique has been devised for staggered-mesh, quadrilateral-zone, 
2-D Lagrangian codes [5], and has been implemented in a multi-temperature plasma-fluid 
code for ICF [6]. 

2. THE REZONING TECHNIQUE 

The rezoning technique considered here is a discrete one, i.e. is only performed 
when the mesh distortion exceeds a given "measure". The criterion for switching on the 
rezoning is presently as follows. We consider separately each of the two couples of 
triangles in which a quadrilateral cell is divided by each of the two diagonals. The cell is 
considered pathological if for at least one of the two couples the ratio y of the areas of the 
two triangles is outside the range e < y _< l / e ,  where e is a constant smaller than unity 
(typically e = 0.1--4).2) When a pathological cell is detected, rezoning is performed in the 
part of the simulation domain that is affected by some distortion. 

* ENEA guest, supported by ENEA Contract n. 90/151/96/88. 
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The new mesh is generated by applying a variational mesh generator separately to 
each of a pre-determined set of macro-zones, whose boundaries remain Lagrangian (see 
Fig. 1 and, for details, Ref. 7). Appropriate boundary conditions guarantee continuity 
between the mesh in adjacent macro-zones. The mesh generator is a modified version [7] 
of that by Brackbill and Salzmann [8], which yields a mesh, by optimizing between mesh 
smoothness, volume variation and orthogonality. If a well behaving mesh cannot be 
generated with the assigned macro-zone boundaries, then the code automatically chooses 
different macrozone boundaries [7] (see Fig. 1), or couples adjacent macrozones, thus 
leading sometimes to loss of resolution, but allowing for the simulation of fluid motions 
with any degree of shear. 

The fluid quantities are then mapped from the old mesh to the new one. This is 
accomplished by using a remapping algorithm, which guarantees conservation of the 
proper physical quantitites (e.g.: mass for the density remapping). The use of a second- 
order accurate scheme [9] (with Van Leer's flux limiter) keeps diffusion at very low level 
and improves substantially upon a previous first order scheme (see [7] and refs. therein). 
This is particularly important in view of reducing the unphysical mass-diffusion occurring 
when material interfaces do not coincide with macrozone boundaries. The logics of the 
remapping process is summarized in Table I, listing the sequence of operations, the 
mapped quantities and the relevant conserved integral quantities. 

TABLE I 
Logics of the remapping step of the rezoning process. Here p: mass density; T -. -: electron 
(ion) temperature; Tr: radiation temperature; p*: mass density (on vertices); uT:e~c~omponent 
of the velocity (),= x,y); Etx: energy density of non-termal alpha-particles; p j: mass density of 
species j. Primes indicate quantities on the new mesh; the superscrit prov indicates a 
provisional value of the velocity to be corrected to ensure kinetic energy conservation (see 
main text). 

OLD MESH CONSERVED QUANTrrY NEW MESH 

p - -  mass , . j  p ' 

Te( i )'~x~ ~ g e(O electron (ion) internal energy (e e(i))' ~- "~ (Te(i ))' 
Tr radiation energy Tr' 
p* mass p*'  

u r ' ~  ~ p 'u) ,  (momentum)~/ (p*uT)' ; - ~ ( u ~ ) P  r°v 
Ec~ fast a-particle energy Etx' 

pj (mass)j pj' 

Velocity remapping requires particular care. Because of the staggered-mesh scheme, 
the use of an auxiliary, vertex-centered mesh is necessary to remap the two momentum 
components and the kinetic energy. Furthermore, the conflict between energy and 
momentum conservation is dealt with as follows. First, provisional values of the two 
components of the velocity on each vertex are computed by remapping the momentum 
components and by dividing them by the vertex density (in turn obtained by an additional 
remapping process on the auxiliary mesh). Then, these values are "corrected" so as to 
ensure kinetic energy conservation, while distributing the relative momentum error in equal 
quantity between the two velocity components. Temperature remapping is also non trivial, 
requiring the inversion of the material equation of state (in general, highly non linear) 

An illustration of the method and of its quality is given by Fig. 1, showing the mesh 
and the mass density contours before and after the rezoning, in a typical ICF implosion 
simulation. 
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Fig.l: Mesh rezoning during a 
simulation of the implosion 
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(left) and iso-density contours 
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row) and after the rezoning. 
Thicker curves mark the 
boundaries of the macrozones 
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the rezoning process; the 
arrow points to the Lagrangian 
line which becomes a new 
macrozone boundary). 
The iso-density labels 
indicate: 1) p = 10 g/cm3; 2) 
20 g/cm3; 3) 40 g/cm3; 4) 80 
g/cm3; 5) 160 g/cm3; 6) 320 
g/cm °. 

3. RAYLEIGH-TAYLOR INSTABILITY SIMULATIONS 

In this section we present applications of the code to the study of an ICF spherical 
shell implosion, for which a Lagrangian scheme is best suited, and then to a classical, 
Cartesian RTI problem, showing the capabilities of the code also in problems usually 
studied by Eulerian codes. 

In ICF a thin shell is imploded by the pressure exerted as a consequence of the 
absorption of laser light, of thermal radiation, or of particle beams (e.g. heavy ion beams). 
At the collapse, when the shell radius is a small fraction of the initial radius, some inner 
layer of the shell becomes unstable. Evidence for this process was already given previously 
[10], referring to single wavelength perturbations. Due to the increased accuracy of the 
rezoning scheme, the study is now being extended to multiple wavelength perturbations. In 
fig. 2 we show the case of a gas filled shell, with initial radius r 0 = 2 mm and thickness 
Ar 0 = 0.2 mm, driven by a pressure pulse, with spatial non-uniformity in the spherical 
modes l = 4 and I = 12, with peak-to-valley amplitudes C4 = 1.4% and.C12 = 0.3%, 
respectively. The seed for the instability is provided by the mass distribution disturbance 
associated to the shell distortion caused by the pressure non-uniformity. The faster growth 
of the/--12 mode is apparent, in agreement with theory. 

The complexity of the physical model of the full code, however, does not allow for 
the use of meshes suitable for studying modes with l > 16. Therefore, mode-coupling 
processes and turbulent mixing cannot be observed. 

Addressing such a problem requires the capability of resolving spatial scales differing 
by at least one order of magnitude. In particular, it is of interest the case in which the initial 
perturbation consists of a large number of small amplitude, short wavelength modes (with 
the possible addition of a few modes with a much longer wavelength). This mandates the 
use of very large meshes and therefore of a simplified physical model and "experimental 
set-up". We have then simulated the RTI of superposed ideal gases in planar geometrya 
considering multi-wavelength and random initial perturbations [11]. Meshes with up to 10 ~ 
mesh points have been used, and instrumental to the success of the simulations has been 
the control of numerical diffusion at very low levels. 
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Fig. 3. Multiple wavelength RTI (see main text). Contours of constant volume fractions f (f = 0.25; f=  
0.5;f= 0.75) of the ligther fluid are shown (times and lengths scaled as described in the main text). 

An example of such a problem is shown in Figs. 3 and 4. Here superposed fluids 
with density ratio 2:1, in a square box, are considered. The mesh is 200 x 200. The initial 
perturbation consists in the sum of 19 cosine modes, with mode number n in the range n = 
41--59, with random amplitudes, and phase~g= 0 or •= lr..[the size of the box is 1/2 the 
wavelength of the mode n = 1, chosen as the unit length; scales are chosen so as to make 
equal to unity the lin.~ar growth rate of the mode n = 1. The total initial perturbation 
amplitude is about 10-J]. Fig. 4 shows the occurrence of bubble merging, after saturation 
of the shortest wavelength modes. This gives rise to larger and larger bubbles, whose 
maximum size is at any time of the same order of the depth of the mixed layer at the same 
time. The mixing is also evidenced by the plots of the fluid fractions vs z (the direction 
parallel to the gravity) at different times, reported in Fig. 4a. Once the shortest wavelength 
modes saturate, at a time which we take as t = 0, the height of the fastest rising bubbles (of 
the order of one half of the size of the mixing layer), grows quadratically with time, while 
the turbulent energy grows with the fourth power of time (see Fig. 4b). It is also found 
from spectral analysis that the wavelength of the dominant mode grows quadratically with 
time, in agreement with the observed relationship between bubble size and mixed layer, and 
with the law for the growth of the mixed layer. Figure 4c shows the pseudo 1-D energy 
spectra at t = 0 and at t = 4.5, clearly evidencing the emergency of low n modes as a result 
of non-linear mode coupling. 
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We have also observed (see Fig. 5) that large wavelength, "isolated" modes grow 
undisturbed even in the presence of short scale turbulence, at least until bubbles of size 
comparable with a substantial fraction of the wavelength of the large scale mode are 
produced by the bubble merging process. 
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Fig. 5. Same as Fig. 3, but with an additional long wavelength perturbation (n = 2; initial amplitude 10 "2) 
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MIXED-CONVECTION OF ROTATING FLUIDS IN SPHERICAL ANNULI* 

P. Bar-Yoseph, G. Even-Sturlesi, A. Arkadyev, A. Solan, K.G. Roesnert 

Faculty of Mechanical Engineering, Technion, Haifa 32000, Israel. 
flnstitut fiir Mechanik, Technische Hochschule Darmstadt, 6100 Darmstadt, Germany. 

The laminar, axisynametric flow field of a rotating Boussinesq fluid contained within 
concentric spherical annuli is investigated for the case where the outer spherical shell is 
stationary at a given temperature while the inner sphere rotates about a vertical axis in a gravity 
field and is kept at a lower temperature. The characteristic dimensionless parameters of the 
problem are: Reynolds number (Re), Rayleigh number (Ra), Froude number (Fr), Eckert 
number (Ec), Prandtl number (Pr), and the gap width (s). The magnitude of the effect of the 
density variations on the rotational acceleration terms (Coriolis and centrifugal) is a function of 
the ratio of the gravitational acceleration to the rotational acceleration of the inner sphere. The 
ratio of the velocity induced by rotation to that induced thermally is given by Re2Pr/Ra. 

The Galerkin finite element method has been used for the numerical solution of the 
rotationally symmetric momentum, continuity, and energy equations in terms of the primitive 
variables. Biquadratic Lagrangian interpolation was employed for the velocity field and bilinear 
interpolation for the pressure and temperature fields. Several numerical experiments were 
performed comparing mixed and penalty formulations, each of which confirmed the 
computational efficiency of the penalty approach over the mixed formulation. Results are 
therefore reported for the penalty Galerkin finite element formulation. This formulation yields a 
system of nonlinear algebraic equations which can be written as 

F(w,2L) = O, (1) 

where w is the N-dimensional vector that consists of the nodal values of the velocity, pressure 
and temperature fields, ~ = (Re,Ra,Fr,Ec,Pr, s,13) is the parameter set and 13 = f~o/fli (f~o and 
~i are respectively the angular velocities of the outer and inner spheres). In the present study 
13=0, s=0.15 or s=0.5 and Ec=0. The solution of Eq. (1) is a seven-parameter surface in R N+7. 
Solutions by continuation Newton algorithms are used to trace branches in the parameter space 
along which lie steady flow states. 

A zeroth order continuation in Re and Ra with Step size control followed the solution branch 
from a given unique solution state. At each continuation step, a nonlinear equation set was 
solved by a Newton iteration, and the approximation to the solution at each iteration was found 
by a modified vectorized version of the frontal solver for in-core solution of large, sparse 
nonsymmetric systems of the linearized set of equations. The method was an extension of that 
used by the authors in previous work [1]. As a test of the present method, solutions were found 
for mixed-convection in a rotating fluid in cylindrical annuli (finite and infinitely long) and were 
compared with published results (de Vahl Davis and Hessami [2]), showing very good 
agreement. 

*Work supported by the Fund for Basic Research, Israel Academy of Sciences, Deutsche Forschungsgemeinschaft, 
by the Endowment of the Y. Winograd Chair in Fluid Mechanics and Heat Transfer and by the Center for 
Absorption in Science, Israel Ministry of Immigrant Absorption. 
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In the present paper we focus on the formation of various secondary flow patterns in the 
meridional plane (the flow is assumed to be rotationally symmetric). Such patterns are 
modifications of the Taylor vortex flow and polar vortex breakdown investigated by the authors 
in previous work [1,3] or a completely new wide gap instability originated at the south pole. 
The emphasis is on the combined effect of vertical-gravitational and rotational body forces in a 
fluid with thermal gradient. The flow regimes were investigated for different Ra and Re 
numbers (0 < Re < 1500,0 < Ra < 5- 105) with the other parameters fixed. The range of 
investigation covers the subcritical region in which the flow is stable and uniquely determined, 
as well as the supercritical region where multiple solutions exist. Comparison of the present 
results with thermal effect with previously published results for incompressible flow shows the 
following: 

(a) For incompressible flow in a narrow gap (s=0.15) at Re=1500 Bartels [4] found three 
symmetric steady Taylor vortex flow modes near the equator (base flow, one pair of vortices 
and two pairs of vortices), depending on the acceleration of the inner sphere from rest to the 
final steady rotation or on an artificial temporary perturbation of equatorial symmetry. Our 
results for Re=1500 with thermal effects e.g., at Ra=3.75x105 show, first, that a new non- 
symmetric flow mode with three pairs of vortices can exist. Secondly, transition between 
different flow modes which can exist at a given value of Re and Ra can be achieved by reaching 
that value by different paths in the Re-Ra plane (Figs. I and 2). In particular, by following path 
D to its end point Re=1500, Ra=0, we obtain by passing through a thermal perturbation the 
one-pure state which could previously be obtained only by an artifical perturbation 

(b) For incompressible flow in a wide gap (s=0.5) our previous results [3] show that a 
vortex breakdown can occur at the polar axis for Re>3300 while below Re=3300 the flow is the 
simple two-cell base recirculation. With thermal effect, vortex breakdown can occur from 
Re>1500 [5]. This vortex breakdown is a stable and unique solution at each parameter set. The 
present results with thermal effects show that in a range of Re below that corresponding to 
vortex breakdown, a flow instability leading to multiple solutions can occur. For example, in the 
region near Re=100 and Ra=l.2xl05 five different flow patterns were found, depending on the 
path in the Re-Ra plane leading to the point under consideration. These patterns contain even or 
odd numbers of recirculation cells, extending over the whole meridional cross-section (Figs. 3 
and 4). 

The effect of Froude number (Fr) on the flow field has been investigated in the supercritical 
region for 10 -3 < Fr < 10 and was found to be negligible there. 
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1. Introduction 

Today, it is a standard technique to accelerate the convergence of explicit 
multistage time-stepping schemes to steady state using implicit residual 
smoothing (IRS) together with multigrid. In the past, various IRS methods have 
been developed. They all artificially extend the stability region of the basic 
explicit time-stepping scheme and thus they permit higher CFL-numbers. 
Additionally, residual smoothing strongly effects the damping properties of a 
scheme which are essential for the robustness and fast convergence of multi- 
grid. The different IRS methods can be divided mainly into two categories. The 
first one contains smoothers with a centrally weighted form of the implicit 
operator [1, 31. The second category includes smoothers with an upwind 
biased form of the operator as developed in [2, 3]. The objective of this paper 
is to explore the capabilities of different IRS methods in combination with both 
central [1] as well as upwind [4] spatial discretizations and to compare their 
efficiency for various 2-D inviscid and viscous flow problems. 

2. Description of the Implicit Residual Smoothing Methods 

In the following, all the investigated IRS methods will be briefly described. 
Some important results of a 2-D Fourier analysis code t5] will also be pre- 
sented. 

• Central smoothing based on superposition of 1-D operators (CSlD): 

This well known technique introduced by Jameson and Baker [1] reads in 
I-direction as follows 

- -  ~ R I - 1 , J  -t- (1  - F 2 ~ ) R / ,  J - -  ~:R I + l , d  = R I , J  ' ( 1 )  

where/~ represents the unsmoothed residual, R the smoothed residual and 
the smoothing coefficient. 

• 2-D central smoothing using Laplacian operator (CS2D): 

A two-dimensional centrally weighted operator can be defined as 

- -  KRI  - 1,J - -  KR I  + 1,J - -  ~:RI,J - 1 - -  KRI,J + 1 ~L (1 + 4,s)RI, J = RI, J . ( 2 )  

* NASA Langley Research Center, Hampton, VA 23665, USA 
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This technique leads to a sparse matrix which is solved iteratively. Because the 
coefficient matrix of the system is diagonally dominant, only a few Gauss-Sei- 
del iterations (3-6) are sufficient. 

In order to improve the damping and convergence characteristics of multistage 
time-stepping schemes, particulary in connection with upwind spatial discret- 
izations, new upwind-biased IRS methods have been recently developed by the 
authors [2, 3]. In contrast to the central IRS, the residuals are smoothed 
applying upwind operators based on the wave propagation direction. All 
methods follow the operator splitting approach. The smoothing operators are 
written here for convenience in I-direction only. 

• Simplified upwind smoothing (SUS): 

In order to give the CS1D method some kind of upwind character, a slight 
modification is devised [3] 

- -  ~ R I -  1,d + (1 + ~)RI,  d = RI ,  J , i f  M I > 1 

- -  s R I  - 1,J 4 -  (1 4- 2 s ) R I ,  J - -  s R  I + 1,J = R I , J  , i f  IM~I -< 1 (3) 

(1 4- s ) R I ,  J - ~ R  I + 1,J = R I , j  , i f  M I < - 1 . 

In this simple procedure the upwind direction is determined by the Mach- 
number M projected into the coordinate direction. 

• Improved upwind smoothing (IUS): 

For systems of equations an improved upwind-IRS can be obtained consider- 
ing the wave propagation direction for each equation separately. This can be 
accomplished through the splitting of the residual into two parts R ~, R- corre- 
sponding to the positive and negative eigenvalues of the flux Jacobian E3] 

= I ,J 4-  R I - j  • (4) 

The smoothing is applied independently to both parts 

--  ~RI + + (1 + - f i +  - -  l ,J 
= _ ( 5 )  

(1 4- ~ ) R I j  - , R ~ +  1,J = R I ~  " 

After the smoothing, the positive and negative parts of the residual are simply 
added. 

• Full upwind smoothing (FUS): 

Within this method the residuals are first transformed from conservative to 
characteristic variables, smoothed and then transformed back [2, 3] separately 
for 1- and J-direction. The transformed residuals P are smoothed for each 
equation according to the sign of the corresponding eigenvalue 2. Written for 
the first component of the residual vector (denoted by '(1)') the operator reads 

~(1) 
+ ( 1  + , , . . ,  = . . -  , _ 

(6) 
(1 + o j  I ,J - 1,J I,J , < 0 . 

The damping properties of the schemes are exemplary investigated by 2-D 
Fourier analysis of the two-grid cycle [5]. In contrast to the central smoothers, 
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all upwind smoothers reduce to one single scheme for a scalar advection 
equation. In Fig. 1 amplification factors for the central spatial discretization and 
the three smoother types are displayed. Compared to the CS1D method, the 
2-D central IRS shows a better damping of the high-frequency modes. The 
upwind IRS damps (at this high CFL-number) satisfactorily only in the coordi- 
nate directions, revealing the one-dimensionality of the method. Similar 
behavior is found for the upwind spatial discretization (Fig. 2). Therefore, a true 
2-D implementation of the upwind IRS is currently under investigation. 

3. Numerical Results and Discussion 

At first, computations have been carried out for inviscid transonic and super- 
sonic flow past a NACA 0012 airfoil as well as for hypersonic flow around a 
circular arc. Both central and upwind spatial discretizations have been used. 
The required multigrid cycles (for residual drop of 5 orders/ 6 orders for the 
circular arc), the CPU-times (1 processor Cray Y-MP) and the asymptotic con- 
vergence rates are summarized in Tab. 1, 2. For each test case the most effi- 
cient multistage scheme with an optimal CFL-number and smoothing coeffi- 
cient has been chosen. Additionally, the convergence has been enabled or at 
least improved (up to factor 2.5 in CPU-time) for super- and hypersonic flows 
coupling central IRS with an simple upwind prolongation (yet unpublished). 
One example is shown in Fig. 3. In general, central IRS performs best with a 
central scheme, and upwind IRS (particularly FUS) performs best with an 
upwind scheme. In accordance with the analysis, CS2D needs fewer cycles 
than CS1D (except for one transonic case) but the CPU-times are mostly long- 
er. It can be stated, that at higher Mach-numbers some upwind technique (for 
IRS or the prolongation) is essential for fast convergence. 

The last test case presented is a hypersonic viscous flow past a 20 ° com- 
pression ramp [5]. The rendering in Fig. 4 shows the convergence history of 
an upwind-TVD scheme smoothed by CS1D or FUS, respectively. By the FUS 
method the CPU-time could be significantly improved. However, using the 
semicoarsening technique [5] both smoothers would require approximately 
the same CPU-time. Further investigations with other IRS methods would be 
desirable. 
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IRS method No. of cycles Conv. rate CPU-time (s) 

CS1D 113 0.900 26.5 
C~ CO 

o ~ dc° ~ o~x CS2D 83 0.870 27.0 
OJ 

O< II ,c ~° SUS 236 0.952 63.3 

< ,_~ II .~_ IUS 61 0.827 21.8 
z ~  

FUS 62 0.830 24.1 

CSlD 111 0.841 10.3 
04 CO 

"- ~ CS2D 107 0.840 12.4 

< II ~ ~ SUS 157 0.891 17.0 

"c. I US 138 0.903 19.0 
Z ~ ~3) 

FUS 123 0.889 17.9 

CS 1D 422 0.969 16.8 
t j  

o CS2D 293 0.942 17.2 

o SUS 400 0.966 17.7 "5 I1~ 
E -o J ' c_  IUS 236 0.946 12.3 
~5 

FUS 422 0.969 25.9 

Tab. 1: Convergence data; central spatial discret izat i0n 

IRS method No. of cycles Conv. rate CPU-time (s) 

CS1D 413 0.981 84.8 
Od o3 

~ c o % ~  CS2D >580 >160. 
~ ~ o e q o  
< It ,.Z ,--~ SUS 450 0.982 103.0 

II .~__ IUS 241 0.953 96.1 
Z 

FUS 204 0.945 85.4 

CS1D 135 0.912 20.0 
O4 03 

~" CS2D 95 0.865 25.0 

° ~ °  ~ SUS 91 0.780 15.4 O< ii r'-- ~ 
II .~_ IUS 181 0.938 41.5 

FUS 70 0.848 16.0 

CS1D 279 0.929 19.5 
t~ 

o o CS2D 189 0.907 19.0 
=.- L',I X 

o SUS 310 0.943 23.6 "5 I1~ 
• ~ ' E  IUS 218 0.907 15.8 

5 
FUS 219 0.939 14.0 

Tab. 2: Convergence data; upwind-TVD spatial discret izat ion 
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Fig. 1: Amplification factors for 2-0 scalar Fig. 2: Amplification factors for 2-D scalar 
advection problem; central discr., advection problem; 2nd o. upwind, 
5-stage scheme, 2 dissipation eval. 5-stage scheme,  5 dissipation eval.. 
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Fig.  3: Convergence histories (multigrid); 
NACA 0012 airfoil, M~ = 3, ~ = 7°; 
inviscid flow, CS1D, upwind-TVD. 

Fig.  4: Convergence histories (multigrid); 
compression corner, M= = 10; 
laminar flow, upwind-TVD. 

390 



THF, C O M P U T A T I O N  OF H I G H I N  N O N L I N E A R  F R E E  S U R F A C E  

W A V E S  W I T H  A T H R E E - D I M E N S I O N A L  P A N E L  M E T H O D  

J. Broeze :, E.F.G.  van Daalen 2 and P .  Zandbergen 3 

1Delft Hydraulics, P.O. Box 152, 8300 AD Emmeloord, The Netherlands 
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In this paper we discuss a higher order three dimensional panel method for nonlinear 
free surface wave simulations. A high degree of accuracy is obtained by a higher order 
resolution of the spatial problem and an efficient fourth order time integration method. Due to 
the accuracy, the algorithms provide stable results in the computation of linear and (highly) 
nonlinear wave problems. 

1. INTRODUCTION 

Boundary integral equation methods are very useful for the computation of hydrody- 
namic (nonlinear) wave problems in domains with arbitrary bottom geometries. They have 
favourable properties for the application to problems with time-dependent shapes of the free 
surface. Also their application to problems with fixed or freely floating bodies is very 
promising. 

A number of successful two-dimensional methods have been described in literature 
(see e.g. [3,4]). 

Extending the 2-D methods to three dimensions is possible for most of the methods. 
However, in practical computations, large problems may occur then. The problems are 
mainly due to the low order of accuracy of the method, the large amount of CPU time needed 
for the computations, and the complex algorithms for the geometric description and the evol- 
ution of the boundary grid. These are the main reasons why to our knowledge hardly any 
computations on nonlinear waves with a 3-D boundary integral equation method have been 
described in literature yet. 

In this paper we will discuss some of our experiences in the further development of a 
higher order three-dimensional panel method for nonlinear free surface gravity waves. The 
method provides stable and very accurate results for linear, mildly nonlinear and highly 
nonlinear wave problems. 

A 2-D version of the method has also been extended for the computation of the 
interaction with freely floating bodies. The 3-D code can be applied to problems with 
submerged bodies. The extension of this method for floating bodies is now in development. 

In this paper we will additionally present results of computations on 3-D problems. 
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2. PROBLEM DEFINITION 

The fluid is assumed to be incompressible and inviscid. The motion of the fluid is 
assumed to be irrotational. Under these circumstances, a potential ¢ for the flow velocity can 
be introduced: 

_v = V#p (1) 

This potential satisfies Laplace's equation through the domain: 

V2~ : 0 ~_cfl) (2) 

The elliptic field equation can be solved (providing the velocity field in the whole 
domain), if boundary conditions are provided on the boundaries: the potential or its normal 
derivative must be prescribed. 

For obtaining the values at a new time level, the boundary conditions for the field 
equation can be obtained by integrating the time-dependent equations for the boundary 
conditions. The most important boundary conditions are the dynamic and kinematic boundary 
conditions that provide expressions for the time derivatives of the potential and the positions 
of the fluid boundary: 

04, = -g ' z  - ~ ( v~ )  ~ ÷ _ .v~  (3) 
Dt 

Dx a~ (4) 
- -  " n  - 

Dt 

On the bottom and lateral boundaries, some other well-known boundary conditions must be 
used. 

In this paper we will present our special approaches for solving this set of equations 
in the time domain in three dimensions. 

3. SOLUTION METHOD 

3.1 The original solution method 
Romate [1] has developed an accurate higher order 3-D panel method for the 

numerical simulation of free surface gravity waves. His program is extremely fast due to the 
high degree of vectorization (for doing a time step in a problem with 650 panels, he needed 
about 4 CPU seconds on a CRAY-XMP). 

The method is based on Green's third identity for solving Laplace's equation. For the 
discretization of the boundary integral equation, the boundary of the domain is divided into 
quadrilateral panels, with one collocation point per panel. For determining the influence 
coefficients, a linear source distribution and a quadratic dipole distribution is assumed. Tan- 
gential derivatives are determined by finite difference approximations over the collocation 
points of a number of adjacent panels. 
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For the time integration Romate used the classical fourth order Runge-Kutta method 
with 'frozen coefficients' (i.e. the influence coefficients were not redetermined at the inter- 
mediate time levels). 

Romate's method provided stable and very accurate results for linear and mildly 
nonlinear problems. However, in the computation of highly nonlinear waves, instabilities 
occur, due to numerically excited cross waves. 

In order to improve the results of Romate's method for highly nonlinear wave 
problems, we have modified the method. 

3.2 Evolution of the domain boundary grids 
In [2] we presented a variational formulation of the free surface problem, including 

the motion of lateral boundaries of the domain. We concluded that having a free surface with 
fixed positions for the vertical boundaries is only allowed when simulating solid walls. This 
was confirmed in computations on a highly nonlinear wave problem, that showed that 
instabilities develop near the intersection of the free surface with the inflow and outflow 
boundaries if their positions is kept fixed. 

A well-posed problem is obtained, if all domain boundaries travel along with the fluid 
particles (a Lagrangian description). In numerical computations on high waves, no instabilities 
occur with this approach. However, due to variations in the horizontal velocity along the 
vertical boundaries, in the computation of highly nonlinear waves, after a few wave periods, 
highly curved inflow and outflow boundaries occur. A very dense grid is needed on these 
boundaries to prevent numerical instabilities then. 

We have also concluded from the variational formulation that also other motions of 
the lateral boundaries are allowed, if only a Lagrangian description is chosen for the 
intersection of these boundaries with the free surface. For practical reasons we decided to 
have the vertical inflow and outflow boundaries travelling in horizontal direction along with 
the motion of the fluid particles at the intersections of these boundaries with the free surface 
(without variations in the horizontal velocity of the domain boundaries over the vertical). It 
should be noted, that we do not prescribe all fluid particles at the lateral boundaries to move 
at this uniform velocity (due to the partially non-Lagrangian description of these boundaries, 
fluid can flow in or out of the domain). Using this approach, long and stable computations 
are possible, without instabilities. 

3.3 Geometric modelling 
In Romate's approach, fixed horizontal positions were used for the inflow and outflow 

boundaries. Because the position of the grid at the free surface changes in time (also the 
horizontal positions), a grid redistribution algorithm was used in his method after every time 
step to preserve equal panel sizes over the surface. 

Grid redistributions may reduce the accuracy of the method. That is why we have 
chosen to replace the algorithms for the geometric modelling and the evolution of the grid. 
Grid redistributions are no longer necessary due to the basically Lagrangian motion of the 
surface. 

In the present approach, the geometric modelling is based on the positions of the 
collocation points, and the evolution of the grid in time is determined by the motion of the 
collocation points. As explained above, for the free surface a Lagrangian description for the 
motion of the collocation points is chosen. Special algorithms have been developed for the 
evolution of the grids on the lateral boundaries and the bottom to keep the boundary grids 
well connected at the intersections. 
An adaptive grid motion algorithm has been implemented to ensure that the grid has some 

393 



desirable properties (such as a dense grid on places with large gradients, and only small 
curvature of the grid lines over the boundaries). 

Because in our method the collocation points are at the centres of the panels, also a 
new iterative algorithm has been implemented to determine the intersections of adjacent 
networks. 

The geometric data for the panels of each network are determined from a projection 
of the network on a rectangle in the computational domain. This implies that some boundaries 
must be split up into a number of networks if constructions are introduced into the fluid 
domain (multiply connected boundaries). For that aim we have extended the algorithms, so 
that smooth connections can be determined between the networks, and an arbitrary number of 
adjacent networks can be connected to one network edge. 

3.4 Time integration 
Because Romate's time integration method may cause a severe loss of accuracy in the 

computation of highly nonlinear waves (due to the 'frozen coefficients', which may cause 
severe errors in situations with rapidly deforming boundaries), we have implemented another 
time integration method. We have chosen to implement a 2-stage 2-derivative generalized 
Runge-Kutta method, where the geometric parameters and the influence coefficients are 
redetermined at the intermediate time level. This method is very accurate, with a minimal 
increase of CPU time. 

4. NUMERICAL RESULTS 

4.1 Computation of highly nonlinear periodic waves 
Due to the above described improvements, stable and very accurate results are 

obtained in highly nonlinear wave computations. 
As a test case, computations were done on a periodic propagating wave, with amplitude 5m, 
wave length 60m and wave period 6.55s on 10m water (exact solution is known from 
Fourier-theory). The height of this wave is over 80 % of the theoretical maximum. 
The initial solution is prescribed. On the inflow boundary, the exact normal velocities is pre- 
scribed (simulating a wave maker). Figure 1 shows the solution obtained after 3 wave 
periods. It can be seen in this figure, that the errors in the elevation are below 0. lm (which is 
2% of the wave height). No growing errors or instabilities are observed if this computation is 
continued. 

Abs. e r ro r  in elev, 
__ ABOVE 0.13.5 

0 ,105  - 0135 

0 .075  - 03 .0 ,5  

0 .046  - 0 . 075  

0.016- 0.046 
- 0 . 015  - 0 . 015  

-0,045 - - 0 .O15  

-O .O" t5  - - 0 . 046  

-0.105 - -0.075 

-o.135 - -O.lO5 
m BELOW -0.135 

rigA.Results from computations on a highly nonlinear periodic wave, 
Shape of grid and errors in elevation after 3 wave periods. 

propagating to the right. 
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4.2 Computation of a sofitary wave over a construction 

Real 3-D effects can be observed from computations on the interaction of a highly 
nonlinear solitary wave (wave height 3.5m on 5m water) with a smooth construction on the 
bottom. Fig.2 shows the shape of the free surface and the bottom grid (both including the 

grid on the lateral boundaries) after the wave has passed over the construction. The results 

show that the wave becomes vertical and starts to break behind the obstacle. 

Fig.2. Shape of free surface and bottom grid after interaction of solitary wave with construction. 
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1. INTRODUCTION 

In this paper we shall describe a new numerical method for solving conservation laws. It is much 
simpler than a typical high resolution method [1]. No flux limiter or any characteristics-based technique is 
involved. No artificial viscosity or smoothing is introduced, and no moving mesh is used. Yet this method 
is capable of generating highly accurate shock tube solutions. The slight numerical overshoot and/or 
oscillations generated can be removed if a simple averaging formula initially used is replaced by a 
weighted averaging formula. This modification has no discernable effect on other parts of the solution. 
Because of its simplicity, multi-dimension generalization is straightforward and it allows for the 
simultaneous treatment of variables in different spatial directions. 

2. CONSERVATION LAWS 

We consider a dimensionless form of the I-D unsteady Euler equations for an ideal gas. Let p, u, p, 
and ~/, respectively, be the mass density, velocity, static pressure, and constant specific heat ratio• Let 

q l = P  , q 2 = p u  , q 3 = P / ( ' ~ - l ) + ( 1 / 2 ) P  u2 (2.1) 

f l = q 2  , f 2 = ( ~ - l ) q a + ( 1 / 2 ) ( 3 - ' y ) ( q 2 ) 2 [ q l  , f 3 = ' [ q 2 q 3 ] q 1 - ( 1 / 2 ) ( ~ - l ) ( q 2 ) 3 / ( q l )  2 (2.2) 

Then the Euler equations can be expressed as 

~qm/~t+~fm/~x=O , m = 1 , 2 , 3  (2.3) 

Let xl = x and x2 = t be considered as the coordinates of a two-dimensional Euclidean space E 2. The 
integral form of Eq. (2.3) in the space-time E2 can be expressed as (see Fig. 1) 

ft. - ~ s = 0  m = 1 , 2 , 3  (2.4) s(v) m 
. - ~  

where (i) S (V) is the boundary of an arbitrary space-time volume V in E 2, (ii) hm = (fm,q,~) are space-lame 
- - 9  . . _ >  . . 

current density vectors in E 2, and (iii) ds = des n with do  and ~ respectwely, being the area and the 
• - - = 9  - - - > .  . - - - )  . 

outward umt normal of a surface element on S (V). Note that (i) hm'ds is the space-lame flux of hm leaving 
the volume V through the surface element ds, and (tt) all mathemaucal operalaons can be carried out as 
though E z is an ordinary two-dimensional Euclidean space. 

3. NUMERICAL METHOD 

Let Ez be divided into nonoverlapping rhombic regions (see Fig. 2) referred to as solution elements 
(SEs). Each SE is centered at a mesh point (j,n) where n = 0, 1/2, 1, 3/2, • • •, and j = (n+_l/2), (n+3/2), 
• • . ,  i.e., j is a half-integer (whole integer) if n is a whole integer (half-integer). In other words, j and n 

are both whole integers or both half-integers if, as occurring in Fig. 2, a SE is centered at the mesh point 
Q',n+l/2). Thus, the locations of SEs and their centers are staggered over every half time-step. A SE 
centered at Q',n), and its interior are denoted by SE(j,n) and SE'Q',n), respectively. 

For any (x,t) ~ SE'Q',n), qm(x,t), fm(x,t), and -ffm(x,t), respectively, are approximated by qm(x,t;j,n), 
f m(x,t ;j,n), and h m(x,t ;j,n) whxch we shall define immediately. Let 

q m(x,t ;j,n) : (Ore) ~ + (O~m)~ (x -x ) )  + (l~m)7 ( t - t  n) , m = 1, 2, 3 (3.1) 

where (Cm)7, (~m)7, and (13m)7 are constants in SE'(j,n), and ( x y  n) are the coordinates of the mesh point 
(j,n). Note that 

§ This work is dedicated to the memory of a teacher, Mr. Nylon Cheng. 
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q m(x),t";j,n)=(c,.)7 , 3q,.(x,t;j ,n)/Ox = (otm)] , 3qm(x,t;j ,n)/3t =([~m)7 (3.2) 

Moreover, if we identify (o,.)], (0~,.)], and (13,.)7, respectively, with the values of qm, 3q,./3x, and 3q, . /3t  
at (xj,t"), the expression on the right side of Eq. (3.1) becomes the first-order Taylor's expansion of qm(x,t) 
at (xj,t"). As a result of these considerations, (ore)l, ((xm)7, and ([~m)7 will be considered as the numerical 
analogues of the values of q.,, 3q.,/3x, and 3q, . /3t  at (x),t"), respectively. 

Letf , . (x , t ; j ,n) ,  m = 1, 2, 3, be defined in terms of q m(x,t;j,n), m = 1, 2, 3, according to Eq. (2.2) with 
the understanding that fm and qm in Eq. (2.2) be replaced by f,~(x,t;j,n) and q~(x,t;j,n), respectively. 
Using Eq. (3.1), fm(x,t ;j,n) is expressed as a function of (x-xi) and (t-t"),  and then expanded as a power 
series of them. q~he new method is simplified by truncating the power series after first-order terms. This is 
consistent with the first-order approximation given in Eq. (3.1). In the new method, only f , .  at x =xj are 
needed. Let 0,. = (0,.)] and 13,. = (13m)~. Then explicitly, we have: 

f m(x),t;j,n) = 02 + I]2(t-t n) (3.3) 

f2 (x), t ;j,n ) = (y -  1 ) 03 + ( 1/2) (3 - "/) (02) 2 ] ol 

+ [ (Y- 1) [33 + (3 - 7) (ozl32 / Ol) - (1/2) (3 - 31) (r~2 / ol )2 I~1 ] (t - t n) (3.4) 

f3(xi,t  ;j,n) = 70203/o l  - (1/2) (7-  1) (02) 3/(ox) 2 + { 7[(02~3 + o3132)/ol 

- o203~a/(oi)  2 ] + (1/2) (y -  1) [ 2(o2/Ol)3[~1 - 3(02/01)2~2 ] } ( t - t  ~) (3.5) 
___) ___) 

Since h,. = (fm,qm), we define h,.(x,t ;j,n) = (f , .(x,t  ; j ,n) ,  q m(x,t ;j,n) ). 

Let Ez be divided into nonoverlapping rectangular regions (see Fig. 2) referred to as conservation 
elements (CEs). They are also staggered over every half time-step. Let the CE with its upper edge 
centered at (j ,n) be denoted by CE0",n). Then the current approximation of Eq. (2.4) is 

---) _-7> 
~S(CEq,n)) -h'hm ' d.~ = 0 ( all possible m and 0 ,n)  ) (3.6) 

Because the entire bounclary (except for three isolated points) of a CE is located within the interiors of 
three neighboring SEs, h,. ~s continuous across any interface separating two neighboring CEs. Thus Eq. 
(3.6) will remain valid if CE(j,n) is replaced by the union of any combination of CEs. 

Because each S (CE(j ,n))  is a simple closed curve in E2 (see Fig. 1), the surface integration form Eq. 
(3.6) can be converted into a line integration form [2, p.14], i.e., 

.-.) 
~S(CEq,.)) g m ' ~ r = 0  ( all possible m and ( j ,n) )  (3.7) 

where g,n = ( - q m ,  f ~  ) and dr = (dx,dt). 

For each SE(/',n), let 

s 1 (j ,n) = (Ax / 8) 0q + (1/2) (At / Ax) [ oz + (At/4) 132 ] (3.8) 

sz(j,n) = (Ax/8) (xz + (1/2) (At/Ax) [ (y -  1)o3 + (1/2) (3-7)  (o2)2/Ol ] 

+ (1/8) [ (At)2/ax ] { (~/- 1) 133 + (3-7)  [o2~2/ol  - (1/2) (o2/ol)Z1~1 ] } (3.9) 

s3(j,n) = (Ax/8) (x3 + (1/2) (At/Ax) [ 7o2o3/cq - (1/2) (y -  1)(o2) 3 / (o l )  z ] + (1/8) [ (At) z ]Ax ] 

X { ( 7 / O 1 )  (O2~ 3 + O3[~ 2 -- G'20"31~ 1 / O  1 ) + (7--  1) [((Y2/O1 )3[~1 -- (3/2) (02/O1)z132 ] } (3.10) 

where Om= (Or,)7, a,~ = (C~m)7, and [3,, = (13m)7- Then Eq. (3.7) implies that, for each SE(j,n+I/2),  

(o,,)7 +v2 = (1/2) [((r,,)]_a/2 + (o,,)~+1/z ] + s, ,(j-1/2,n) - s~(j+l/2,n) , m = 1, 2, 3 (3.11) 

i.e., (o,,)] +vz is determined in terms of the numerical variables associated with SE(j-1/2,n)  and 
SE(j+I/2,n).  Similar formulae for (cx,,)7 +v2 and (13m)7 +I/z will be given next. 

Let A+, A, and A_ (see Fig. 2) denote (Xj+l/z,t"+l/2), (xi,t"+l/Z), and (x/_l/2,t"+1/2), respectively. Let 

q m:i: = q m(xj±l/2,t"+~/2;j+-l/2,n) (3.12) 

Because A± do not belong to SE'Q'+I/2,n), the expression on the right side of Eq. (3.12) is to be evaluated 
at the two points immediately below them. A central-difference formula for evaluating (~x,.)] ÷v2, the 
numerical analogue of 3q,. / 3x at point A, is 
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(am)~ '+1'2 = (qm+ - qm-)/~C (3.13) 

This formula is valid as long as no discontinuity of q,, (or its derivatives) occurs between A_ and A+. In 
the following discussion, we develop an alternate which is valid even in the presence of  discontinuity. 

Let 

(0t,,:~)~ +a/2 = -+ [qm± - (ffm)~ +I/2] / (AX/2) (3.14) 

where (~,n)7 +1/2 has just been obtained using Eq. (3.11). Because qm+, (~,,)]+v2, and q,~_ are the 
numerical analogues of q,, at A+, A, and A_, respectively, (c~,,+)] +uz and (am_)] -u2 are two numerical 
analogues of 8qm(X),t"+l/z)/Sx with one being evaluated from the right and another from the left. Note 
that (o~,,)~ +1/2 defined by Eq. (3.13) is equal to the average of (ot,.+)~ +1/2 and (~,,_)~+t/2. 

In case that a discontinuity occurs between A and A÷ but not between A and A_, one would expect that 
I(c~,,+)y+v21 =, I(c~,,_)7+v2 I. Moreover, because A and A_ are on the same side of the discontinuity while 
A and A÷ are on the opposite sides, (o~m)7 +1/2 should be closer to (a,,_)]+1/2 than (a, ,+)]  ÷v2. This 
observation suggests that (or,,)7 ÷v2 should be a weighted average of (a,,+)~+1~2 and 0x,,_)~ ÷1/2 biased 
toward the one with the smaller magnitude. 

As a result of the above and other considerations [3], Eq. (3.13) will be generalized by 

( ~ m ) 7  +1/2 = F ((am_)j+l/2,(O~m+)]+l/2"~C ) ( 3 . 1 5 )  

Here c_>0 is an adjustable constant and the function F is defined by (i) F (0,0;c) = 0 and (ii) 

F(eL,m-;c):(l~l~+l~l~)l(l~(+leLl=), (Io~+l + leLI > o) (3.16) 

where eL and oh- are any two real variables. Note that F (eL,oq.;c) = (eL + iz+)/2 i f  c = 0 or [eL I = ]lZq_ I, 
i.e., Eq. (3.15) is reduced to Eq. (3.13) i f  c = 0 or l eLI = I°~+1 • Also the expression on the r ight side o f  Eq. 
(3.16) represents a weighted average of eL and ~ with the weight factors la+l~/(la+l~+ la_l ~) and 
[eL [c/([(x+ [c + [eL [~). For c > 0, this average is biased toward the one among eL and a+ with the smaller 
magnitude. For the same values of I~+] and loll, the bias increases as c increases. 

Substituting Eq. (2.2) into Eq. (2.3), one obtains three equations in which 3q, , /S t ,  m = 1, 2, 3, are 
expressed in terms of qm and 8q , , /Sx ,  m = I, 2, 3. Let q,, and their derivatives be replaced by the 
corresponding numerical analogues at the mesh point (j,n +1/2), one obtains that 

( ~ 1 ) 7  +1/2 : --  0(, 2 (3.17) 

(~z)~ +u2 = (1/2) (3-3~) (¢r2/(rl)2cq - (3-~/)((r2/~rl) ~ 2  - -  ('~-- 1)(Z 3 (3.18) 

Ct ~.n+l/2 _ r , ~  O" / t ( y  "~2 I", 1 ~ p3.1y - t l "  2 3 k 11 - -~ , I - -  / ( ( Y 2 / ( y 1 ) 3 ] ~ l  

+ [ (3/2) (3'-  1 ) (cr 2 / ~1 )2 _ 3t ~3 / or1 ] a2 - y (~2 / ~1 ) (x3 (3.19) 

where (y,, = (c~)7 +1/2 and am = (am)] +v2. 

With the aid of  Eqs. (3.11), (3.15), and (3.17) - (3.19), (Crm)], (a , , ) ] ,  and (13,,)~ can be determined in 
terms of the initial values (c,,)°u2, (ty,,)°3/2, - . - ,  and (o~,,)°v2, (a,,)°3/2, - - - .  

4. NUMERICAL RESULTS 

We consider a shock tube problem used bY Sod [4]. Let 3' =1.4. At t = 0, let (/) (p,u,p) = (1,0,1), i.e., 
(q l ,q2 ,q3)  = (1,0,2.5), i f x  < 0, and (ii) (p,u,p) = (0.125,0,0.1), i.e., (q l ,q2 ,q3)  = (0.125,0,0.25), i f x  > 0. 
Thus 

o o 0 I (1,0,2.5) if j = - 1 / 2 , - 3 / 2 ,  " "  (4.1) 
(i) 

((Cl) j , (Gz)j , (~3)))  = (0.125,0,0.25) if j =  1/2, 3/2, . . .  
% .  

and (ii) (c(,,) ° = 0, j = +1/2, +3/2, " ' .  Eqs. (3.17) - (3.19) imply that ([3,,) ° = 0 , j  = +1/2, +3/2, . . - .  

The above initial conditions, and Eqs. (3.11), (3.15), and (3.17) - (3.19), imply that (~,,)7, (c~,,)~, and 
(~]m)7 are constant in two separate regions which, respectively, are defined by j < -(n+l/2) and j -> (n+l/2).  
Thus one needs to evaluate the above variables only if (n+l/2) > IJl. 

The current scheme is stable if CFL = max (lul + [ a l ) A t / ~  <- 1 [3]. Here a = local sound speed. In 
the current computations, Ax = 0.01, At = 0.004, and CFL - 0.88. Numerical results (dots) at t = 0.4 are 
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compared with the exact solutions (solid lines) in Fig. 3. Since each marching step advances the solution 
from t to t+At/2, these results are obtained after 200 steps. Note that (i) shock discontinuity is resolved 
almost within one mesh interval, and (ii) the slight numerical overshoot and oscillations generated when c 
= 0 essentially disappear when c = 1 is used. 

5. CONCLUSIONS AND DISCUSSIONS 

The current scheme has a stencil containing only two points. This minimization of stencil has the effect 
of reducing numerical diffusion [5]. It is achieved by including (~m)] and (13,,)] as numerical variables. 
The fluxes at an interface separating two CEs are evaluated with no interpolation or extrapolation. 
Accuracy of flux evaluation is enhanced by requiring that the solution given in Eq. (3.1) satisfies the Euler 
equations at the center of every SE. This makes the use of characteristics-based techniques less necessary. 
The above key features all contribute to the simplicity, generality, and accuracy of the current scheme. 
They all owe their existence to the use of staggered SEs and CEs. 

In the current method, flux evaluation within each SE(3",n) is required only at a subset of SE(.],n), i.e., a 
horizontal line segment centered at (],n) and a vertical line segment starting upward from (j,n) (see Fig. 2). 
As a result, we may redefine SE(j,n) to be this subset. This new definition is used in the following sketch 
of an extension of the the current scheme to a three-dimensional Euclidean space E3 (Xl = x, x2 = y, and x3 
=t). 

A SE contains three mutually perpendicular rectangles (see Fig. 4a). The point of intersection is 
referred to as the center of this SE. The SEs are staggered in both x -  and y -  directions over every half 
time-step. The CEs are rectangular boxes (see Fig. 4b) also staggered in both x -  and y -  directions over 
every half time-step. From Fig. 4b, it is seen that the boundary of a CE can be divided into five parts 
which, respectively, belong to five neighboring SEs. As a result, the solution procedure described in 
Section 3 can be easily extended to E3. 

By replacing Eq. (3.1) with the second-order approximation, other versions of the current scheme with 
higher-order accuracy were also developed. The details will be reported in [3]. 
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= (x, t) 

cl~ = (dx, dt) 

i~ x 

Figure 1.--A surface element ds and a line seg- 
ment d~on the boundary S(V) of a volume V in 
a space-time E 2. 
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Figure ?---The SEs (the rhombuses formed by solid lines) and the 
CEs (the rectangles formed by dashed lines). The dots repres- 
ent the centers of SEs. 
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Figure 3.~Shock tube solution at t = 0.4. 

A y t !  . . / I  

~ [ .  . . . . . . . . . . . . . .  L_ / / !  ,; ........... ;~ ...... / 1 4  ,I,,'  '-F7 I T Y  

/ ~" / t ~" " 
( a )  ( b )  

Figure 4.--A SE and a CE in E 3. The dots represent the centers of SEs. 

400 



COMPUTATION OF AIRFOIL AND CASCADE FLOWS USING THE 

CLEBSCH DECOMPOSITION METHOD 

S.S. Chu 

Department of Aeronautical Engineering 

Airforce Academy, Taiwan, R.O.C. 

INTRODUCTION 

The Conventional Euler equations can be recast into another form by 

using the Hamilton's principle [i]. The new set of Euler equations 

contains one elliptic-like equation, and several convection equations. 
The velocity is decomposed into several terms, one of which is a 
gradient of the potential function, V~ One advantage with the 
formulation, due to Clebsch [2], is the continuity in modeling the 

physics. For example, the velocity will be defined onlY by V# , while 
all other terms vanish for the case of potential flow. This implies that 
an Euler code can be built from a full potential code by supplying 
convection solvers and adding source terms due to the convective 
quantities. In the meantime, it becomes easier to control the modeling 
of physics locally by setting the behavior of any convective quantities 
a priori, and therefore some possible sources of numerical errors are 

eliminated. 
Another merit with the formulation is that each variable can be 

integrated by following its own characteristics, which distinguishes the 
present approach from the conventional Euler technology [3,4,5,6]. The 

variables in the steady Euler equations are divided into elliptic and 

convective quantities. Elliptic quantities are integrated with a 
relaxation procedure, while the convective quantities are integrated 

using upwind differencing. In conventional Euler technologies, the 

convective quantities, such as entropy, enthalpy, and swirl, are 
contaminated due to finite truncations and numerical diffusion, since 

these quantities are not primary variables in the integration. 

Computations are performed for various two-dimensional, transonic, 

inviscid flows over single airfoil and in cascades. 

GOVERNING EQUATIONS 

For rotational, non-isentropic, inviscid flows, Clebsch defined the 

velocity vector as: 

where # is the velocity potential, k and U are called the Clebsch 
potentials, and # and s are the Clebsch densities. Using a vector 
identity, the velocity decomposition yields the vorticity as: 

~=V#xV~.+VsxV~ (2) 

In this equation, the first term on the right hand side is the 
contribution of pure inviscid vorticity, such as that existing initially 
in the flow or that created to accommodate lift across the inviscid wake 

downstream of the trailing edges. The second term is the vorticity due 
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to the presence of entropy gradients, as in the case of shocks. 
With constraints on mass conservation, energy conservation, and 

kinematic relations, the variational principle recast the conventional 
Euler equations into the following set of equations which describe 
inviscid Euler physics: 

q ' ( p ~ ¢ ) : - V ' ( p # V k + p s V n )  (3) 
pq.q#=O (4a) 
pq.V~=O (4b) 
pq .  V s = O  (4c) 
pq. Vn=-p (4d) 

The first equation is of an elliptic-like form for the potential 
function, and the others are convection equations for convective 
variables. The right hand side of equation (3) represents the 
contribution of convective quantities to mass conservation. The above 
five equations construct a complete system for the five variables( 
¢.~.k.s.~), along with the velocity definition, the Bernoulli equation, 
and the equation of state 

p=kp~exp(s/c,) (5) 

Here, c~ is the specific heat at constant volume, y is the ratio of 
specific heats, and k is a constant. 

INITIAL AND BOUNDARY CONDITIONS 

Equation (3) is a boundary value problem which requires boundary 
conditions at all boundaries. At solid boundaries, the flow tangency 
condition is enforced using the Neumann boundary condition for the 
potential function. The velocity potential function and density at the 
inlet boundary of the computational mesh are hold fixed at the initial 
free-stream values. At the exit boundary the condition of no mass flux 
change is specified. For cascade flows, periodicity must be satisfied 
on the upstream boundary of the leading edge and the downstream boundary 
of the trailing edge. 

For lifting cases, the Kutta condition should be satisfied in order 
to make static pressure continuous at both sides of the trailing edge. 
For single airfoil flows, the outer boundary points have the specified 
circulation consistent with that of a compressible vortex and updated at 
the end of each iteration step. 

The entropy jump across a shock wave can easily be determined in 
terms of the local upstream Mach number normal to the shock by the 
Rankine-Hugoniot relations. 

For solving convection equations only initial conditions are 
necessary at the upstream side. For example, in the case of no vorticity 
initially existing in a flow, the initial conditions for s and ~ can be 
constructed as : 

s=O (6a) 
~=-(xcos~+ysina)a~/y (6b) 

where a. is the freestream sonic speed, and a is the angle of attack. 

NUMERICAL COMPUTATION 

As in conventional full potential codes, the elliptic-like equation 
is solved using central differencing, upwind differencing is implemented 
at supersonic points by adding artificial viscosity terms to provide an 
upwind bias. A flux conservative finite volume method [7] is used to 
discretize the equation, and a line successive over-relaxation method is 
adopted for solving the difference equation when it is elliptic. 

The convection process is an initial value problem and convective 
variables are transported following streamlines. The appropriate way of 
solving the convection equations is therefore by upwind differencing 
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according to the local flow direction. A line implicit method is used 
for integration, which yields a convergence rate of about than two 
orders of magnitude in each sweep. 

The solution procedure is as follows. With initial estimates of 
the velocity potential and convective variables, the elliptic-like 
continuity equation is relaxed for new potential values, which provide 
the velocity field. Type-dependent operators are used as in the full 
potential equation. Next, the convective quantities are transported 
downstream via a convection operator, which in turn influence the 
potential distribution. The physical production of the convective 
quantities is accounted for depending on local flow conditions and 
boundary conditions. Convergent solutions are obtained through an 
iteration cycle. Clebsch variables are defined at nodes, and all other 
flow quantities and metrics are defined at the cell centers of the 
computational mesh. All numerical schemes for the Clebsch Euler 
equations are implicit and second-order accurate. 

TYPICAL RESULTS 
Several transonic cases were tested, including flows around single 

airfoil and through airfoil cascade, to demonstrate the applicability of 
the proposed technology in obtaining Euler solutions. All the test 
problems are for steady, inviscid,adiabatic,transonic flows of a perfect 
gas with a uniform freestream. 

A transonic flow around a NACA 0012 airfoil was first considered at 
freestream Mach number of 0.85 and zero angle of attack. The resulting 
surface pressure distributions are compared with the predictions using 
the method of Jameson et al. [3] in Fig.l. Shock positions captured by 
the two Euler technologies are closer than that from potential equation, 
which is located farther downstream. Shock strengths and shock 
positions are functions of rotat£onal physics that allow the entropy 
change. The effect of flow rotation behind the shock can be observed 
from the Mach contours in Fig.2. Entropy contours from the proposed 
technology are shown in Fig.5. Note that the non-smooth shock shape is 
attributed to the grid size. 

The second problem is a transonic lifting case for a NACA 0012 
airfoil at freestream Mach number of 0.75 and angle of attack of 2 
degrees. Close agreements between the Clebsch Euler and the conventional 
Euler technologies are obtained in pressure distributions and Mach 
contours. Figure 3 compares the pressure distributions on the airfoil 
surface. Mach contours and entropy contours are given in Figs. 4 and 6 
respectively. 

A nonlifting case, NACA 0012 cascade with a pitch-to-chord ratio of 
3.6, was next considered. The flow conditions are inflow Mach number of 
0.8, zero staggered angle, zero inflow and outflow angles. The resulting 
surface pressure distributions are shown in ~ig.7. Comparison of the 
resulting Mach contours shown in Fig.8 shows the differences between 
potential and non-isentropic rotational flows in this cascade problem. 
Entropy contours from the present method are shown in Fig. ll. 

1.0 

- C p  

-I.0 Clebsch Euler 
- - -  Conventional Euler 

~;, 0'5 x ,i0 
Fig. 1 Pressure distribution on airfoil at 

M ~ = . 8 5 ,  a=O*.  

\ 
G 
/ 

Potential flow solution Clebsch Euler solution 

Fig. 2 Mach con tour  for flow around airfoil at M = = . 8 5 ,  a = O  °. 
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Fig.3 Pressure distribution on airfoil 
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Fig.ll Entropy contours for the 
nonlifting cascade 

Fig. 12 Entropy contours for the 
lifting cascade 

The last test case is of a lifting cascade. Figure 9 presents the 
pressure distributions over the suction and pressure sides of a 1 degree 
staggered cascade of NACA 0012 airfoils with pitch-to-chord ratio of 
3.6. The flow conditions are inflow Mach number of 0.78 and inflow 
angle of zero degree. Mach number contours and entropy contours are 
shown in Fig. i0 and 12 respectively. 

CONCLUSIONS 

An alternative method for the solutions of compressible, 
rotational, transonic flows has been presented. The method can also be 
regarded as a natural zonal decomposition technique without switching 
the formulation between zones of different physics. In the approach, 
local physics are accommodated by the control of convective quantities, 
without drawing zonal boundaries for different physics. 

The four test cases verified the applicability of the proposed 
method in two-dimensions, and compared to the conventional Euler and 
full potential technologies. The Clebsch Euler formulation solves for 
each variable by following individual characteristics, which distin- 
guishes the present approach from the conventional Euler method. The 
proposed technology is directly extensible to three dimensional flows. 
Further research is desirable to extend the method into viscous flow 
problems. 
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SolutJons of  the  Vort ici ty Transport Equation at High Reynolds  Number s  

A. Dagan and R. Arieli 
Rafael, P.O.Box 2250, Halfa 31021, Israel. 

Introduction 
The flow field about a two dimensional section at low Reynolds numbers, of the order 
of Re ~ 60 is well organized, with a pair of steady symmetric vortices 1 . Increasing 
the flow Reynolds number within the range of 102 < Re < 5 • 10 s, causes the flow 
to become unstable to asymmetric modes, resulting into a periodic vortex shedding 
behind the configuration. This proccess is the well known as the yon Karman vortex 
street. For higher Reynolds numbers (Re > 5.10 s), this flow pattern disappears, and 
a chaotic wake structure arises. The chaotic structure is essentially a turbulent flow 
regime, in which the stretching mechanism of the line vortices plays an important 
role. Thus, 2-D laminar model is unable to correctly predict the flow field. 

The approximate factorization technique (AF), has been widely used in solving 
the compressible N.S. equation. The main advantage in the AF approach, is that 
the technique permits the use of a relatively large time step and the efficiency in 
their solving the resulting tri-diagonal block structure of the equations. However, 
for the incompressible case this method seems to be not sufficiently effective due 
to the absence of compressibility effects in the continuity equation. A steady state 
solution of the vorticity stream function system, can be achieved by adding a pseudo 
derivative term of ~bt to .the Poisson equation 2. The resultant set of equations 
is easily solved using the AF-1 scheme, in a similar fashion to that used for the 
compressible case. 

Another point of interest and importance is the out-flow boundary conditions 
(OFBC). The OFBC p!ays a crucial r01e in the success of any numerical scheme. 
This condition must prevent the reflection of error waves from the computational 
boundary, especially when the solution contains developing wakes. The usual way 
to handle the OFBC is to imply vanishingly small normal derivatives for both the 
vorticity and the stream function at the outflow computational boundaries 2. Beher 
et. al.2 has shown that the traction-free condition performs very well for most cases 
and allows to place the outflow BC at a distance of about 5 to 6 diameters away, 
for a Re = 103 case. 

Mathematical formulation 
A major concern in any numerical discretization scheme is the presence of numerical 
diffusion and dispersion. Central differencing of the advection terms is known to 
be dispersive while a first order upwind scheme based upon the vector flux splitting 
is diffusive. In the present study, central differencing schemes are used and they 
contribute truncation errors, that should be considered as a dispersion term in the 
equations. In the case of high Reynolds number flows, or in the presence of large 
gradients, additional time scales appear which cannot be resolved by the numerics. 
The lower frequencies associated with these time scales, do not cause any special 
problems. The high frequencies, on the other hand, cannot be ignored and must be 
accounted for in the algorithm. The most convenient way to eliminate the difilcul- 
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ties associated with the high frequencies, is to add to the algorithm some form of 
numerical dissipation. This dissipation introduces an error that does not exceed the 
truncation error and thus, does not affect the accuracy of any one of the physical 
viscous effects. In the present investigation a second order artificial diffusion term 
is introduced into the discretized form of the vorticity transport  equation. 

The governing equation namely, the 2-D vorticity equation and the stream function 
Poisson equation, are solved coupled together using a block ADI method 3,4. The 
simultaneous solution of the two equations eliminate the difficulty emerging from the 
coupling between the vorticity wall condition and the Neuman boundary condition 
for the stream function. The discretization of the two equations in an orthogonal 
body fitted coordinates s is written: 

D2w 

{~T(adY~) + d~n(fldY,)}¢ = Jo~v (1) 

where D2 = ~ ( c ~ )  + 5~(%5,1) while c~ = ~2)lrSn~21415~o;/(#~o;)l , and a similar 

expression is valid for %. J0 = ~z~yn - y~zn is the Jacobian, and a , f l  are the trans- 
formation metric quantities. The g,/z are the central differencing and the averaging 
operators respectively. 

Artificial diffusion is widely applied in any solution of compressible flow. Usually, 
this diffusion is composed of a second order term and a fourth order term. However, 
when an AF technique is used, it requires a block penta-diagonal solver for an 
implicit form of the fourth order diffusion term, or a tri-diagonal block solver for an 
explicit version of this term. Both methods require considerable computer  resorces, 
when the explicit form is used, the required time step is smaller than that  needed 
with the implicit form of the fourth order diffusion term. Moreover, past experience 
indicates that the solution of eq. (1) with a second order diffusion term such as in 
ref [6], might lead to numerical instability. Therefore, it is essential to construct 
the second order artificial diffusion term that ensures numerical stability. This form 
of artificial viscosity is of the stone order of magnitude as the truncation error of 
equation (1)i .e .  O(AzZ,Ay2 ). 

Numerica l  R e s u l t s  
Two test cases are considered in the present paper: a circular cylinder and a thick 
diamond shape profile. In order to initiate the asymmetric mode, the cylinder has 
been slightly distorted by generating an "elliptical bump" with a maximum height 
of 1.0% of the cylinder radius. This "bump"  is located in a circumferential position 
at an angle of 45 o to the flow direction. The flow impulsively starts from rest at 
T = 0.0 where the nondimensional time T is defined as T = (tUoo)/D. Considering 
the incompressible flow around this "distorted" circular cylinder, at a Reynolds 
number (based on free stream conditions and the cylinder diameter) of ReD = 10 4, 

the computed velocity vectors in the vicinity of the solid surface are presented in 
fig. 1. On the same figure, though without sufficient resolution, are presented also 
the location of the two primary separation points and the location of the secondary 
separation as computed at a time level of T = 10. The location of the two primary 
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separation points oscilates in the range of 90 ° ± 10 °. The non-dimensional frequency 
of these oscilationas closely resembles the Strouhal number S = r*D/Uoo of the yon 
Karman vortex street. 

A color map of equal vorticity regions in the flow around a circular cylinder is 
presented in fig. 2. The  vorticity pat tern  of the flow at Re = 102 and at Re = 103 
are shown in fig. 2(a) and 2(b) respectively. The numerical diffusion in the two cases 
is identical. Therefore, the major differences between the two figures can be entirely 
at tr ibuted to real viscous effects. For the case of Re = 103, the presently computed 
drag coefficient Ca -- 1.1 compares well with the value 7 of Ca = 1.0. Similarly, 
the computed value of the Strouhal number is S = 0.20 while that  of ref. [7] is 
S = 0.21. These results considerably differ from previous numerical solutions s'9 of 
the 2-D N.S. equations, where computed values of the drag coefficient of the order 
of 1.7 to 1.8 were reported at Re numbers of 3 • 103," 104 and 108. These values 
overoredict by about 50% the results from avialable experimental data. 

A sequence of eight different pictures presented in fig. 3(a) to 3(h) reveals the time 
history of the flow about  the same "slightly distorted" circular cylinder at Re = 104. 
The vorticity levels in the field are ploted at T -- 1, T = 2, T = 3, T -- 4, T = 5, 
T -- 7, T = 9 and T = 10, in figures 3(a) to 3(h) respectively. At the early stages of 
the flow, (T = 1, T -- 2) the feeding sheet rolls up until two concentrated vortices 
appear. The roll up of the feeding sheet is clear and sharp thus demonstrating the 
relatively low artificial viscosity of the present solution. Due to the asymmetry, the 
inner vortex is slightly advected towards the feeding sheet of its counterpart  (T --= 3, 
T -- 4), resulting in a pile up of the feeding sheet and a formation of a new vortex. 
This process is continued, until a complete von-Karman street wake is established 
(T = 9, T: -  10). In this process, an annihilation takes place between the roled up 
feeding sheet and the counterpart  vortex (T -- 7) and it is found to play a minor 
role in the establishment of the wake formation. In addition, computed values of the 
sectional drag coefficient and the Strouhal number compares very well with available 
data from the literature. At Re = 104 the computed drag coefficient is Ca = 1.25 
whilst the experimental result is found to be Ca = 1.20, the computed Strouhal 
number of 0.19 compares well with the experimental value of 0.20 from ref. [7]. 

The vorticity field as computed at Re = 104 around a diamond shape section, at 
flow conditions where the flow has a 45 ° inclination, is presented in figs. 4(a) to 
4(d). The formation of the primary vortex as well as the secondary are clear in 
the early stage of the impulsively start flow. At T = 1, (fig. 4(a)) the separation 
and the reat tachment  of the sheed vorticity is clearly observed. However, at later 
stages, T -- 2, T = 3 and T = 7, it is evident that the mechanism that  governs the 
formation of the wake is the annihilation process. Such a process is observed in figs. 
4(c) and 4(d), between the confined vortex generated at the central corner and the 
feeding sheet of leading edge. 
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Fig. 2: Flow around a circular cylinder. 
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Fig. 3: Flow around a circular cylinder a t  Re = 10 4. 
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Fig. 4: Flow around a 2:1 "d iamond"  section at  Re = 10 4. 
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1 Introduction 

This paper describes the study of the MHD flow which is produced in an annular region 
containing a weakly ionised gas by the simultaneous application of a radial electric 
current and an axial magnetic field. The resultant body force, and hence the base flow, is 
in a circumferential direction. 

A rotating flow can be generated in ways other than by MHD forces: for example, by the 
rotation of one or both of the cylindrical walls of an annulus (the Taylor problem) or by a 
pressure gradient imposed on a fluid in a curved duct (the Dean problem). In these and 
other cases, the base flow may become unstable at some value of the relevant driving 
force, leading to the generation of secondary flow, e.g. Taylor vortices. The same is true 
here. It has been found that when the product of the imposed electric current and 
magnetic force exceeds a value which depends upon the properties of the fluid and the 
geometry of the annulus, a secondary flow in the form of toroidal vortices is established. 
Our first purpose in this work has been to explore and describe these vortices and the 
conditions for their formation, and to relate these conditions to those applying in other, 
similar, flows. A further consequence of the passage of an electric current through a fluid 
is the generation of heat (Joule heating). The over,all rate of  heat transfer, and its 
distribution along the annulus walls, is affected by the secondary flow. A study of this 
effect has been our secondary aim in this work. 

2 A Description of the Problem 

A weakly ionised plasma at low pressure is contained in an annular cavity of length L 
and inner and outer radii R i and R o. The gas is ionised by the application of an electric 
potential between the cylindrical walls; hence a radial electric current I passes through 
the fluid. In addition, a uniform axial magnetic field B is imposed. 

All walls of the annulus are at rest. The curved walls are held at a constant and uniform 
temperature Tw, while the plane end walls are adiabatic. We simplify by assuming the 
fluid to be incompressible with constant properties. Buoyancy forces can be shown to be 
small in comparison with the electromagnetic body forces and are neglected. 
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3. Mathematical Formulation 

3.1 The flow equations The flow is axi-symmetric, incompressible and laminar, with 
zero dissipation and flow work. The governing equations are the conservation equations 
for mass, axial, radial and circumferential momentum and energy. The interesting feature 
of  the equations in this context is the MHD body force. We have sought their steady 
solution in (r, ~, z) coordinates as t --->~. 

3.2 The electromagnetic interaction The complete body force in a conducting fluid 
depends upon the current I (or, which is equivalent, the current flux J), the magnetic field 
B and the electric field E. Contributions from variations in the relative permittivity and 
relative magnetic permeability are negligible in MHD. 

The body force is F = J x B; and the heat generation per unit volume by the electric 

current is S j  = J - J /o  o where o o is the electrical conductivity of the fluid. The vectors 
J and B are governed by the Maxwell equations. In the present context, when we are 
considering a single component, weakly ionised plasma, we may make the following 
further assumptions: 

(iv) 
(v) 

(vi) 
(vii) 

(viii) 

(i) constant thermodynamic, transport, magnetic and electric properties; 
(ii) B = (0, 0, Bz) and E = (E,., 0, 0,) so that B and E are orthogonal; also B z is 

uniform and E r is not a function of z; and I = (I r, O, 0); 
(iii) the magnetic Reynolds number Re m = %~tmV < < 1, where v = ~/p is the 

kinematic viscosity and ~m is the magnetic permeability; thus the induced 
magnetic field is small compared with the applied magnetic field; 

the Hartmann number Ha B a ( o  o / ~)1/2 = < 1, where a = R o - R  i; 

end effects of the magnetic field are neglected; 
the Hall parameter of the electrons [~e iS of order Unity; 

the Halt parameter of the ions [3 i << [3 e and can be neglected; 
the temperature and velocity of the neutral particles are similar to those of the 
ions, so that the fluid can be treated as a single-component continuum; 

(ix) the temperature of the electrons is much higher than that of all the other 
constituents; 

(x) the ions are singly ionised; 
(xi) the bremsstrahlung radiation of the electrons is negligible. 

With these assumptions, the body force and Joule heating terms can be shown to be 

F r = JipB z =(~eJr  - o  o u B z )  FO? = - J r B z  = - I r B z / 2 ~ r L  

F z = O  S j  = (Jr 2 + ([3 e J r -  ° o u B z ) 2  ) / o -  o 

4 Stream function/vorticity formulation 

The governing equations were transformed from the primitive variable formulation (u, v, 
w and p) to one in terms of the stream function ~p, vorticity ~ and swirl F. The 

equations were made dimensionless using the quantities a = R o - Ri ,  v/a, a2/v, T w and 
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pv2/a 2 as reference values for length, velocity, time, temperature and pressure 
respectively. 

A stream function % vorticity ~ and swirl F were introduced by the definitions 

1 Oap 1 Oap Ou Ow 
u = - - -  w = -  F = rv ~ -  

r Oz r Or Oz Or 

The following parameters are used: 

A = L/a, aspect ratio 

y = Cp/C v specific heat ratio; 
B r  = pv3/kTw a 2 Brinkman number; 

H a  = aBz(C~o/~t) 1A 

Pr = Cp~/k 

C = I r B z a /2~pv  2 

Hartmann number; 

Prandtl number; 

The vorticity transport equation is 

O_~ 1 ~  0 2F OF u~ H a 2 0 U  02~ 1 0 ~  02~ 
+ (ru~)  + (w~)  r 3 Oz r - -  + - -  + - - -  + Ot r Or Oz Or 2 r Or Oz 2 r 2 

The stream function - vorticity relationship is 

1[1 0~ a2al~ ~'02~p ] 
= l +--+7;  r r Or Or 2 

and the circumferential momentum equation may be written, in terms of the swirl, 

or _ (rur_ ~a c o~r 1or" o~r 
- - +  + ( w r ) = - - - +  + - - - + - -  
Ot r A ~ r Oz Oz 2 

The parameter C is more conveniently expressed as an MHD Dean number 

where V m = R o - -  
I rB  z (1 - rl2)2 - 4rl2 (2~lgn a]) 2 

4nLia 4 (1 -  r l)(1- rl 2 ) 
in which r I = R i / R  o. 

The energy equation is 

O0 O0 0 0 =  7 (020 100  + 0 ~ +  7 I C2Br  + ( ~ ° C  ' / :Br  m 
- - + u - - + w - -  ~ r [ ~ r 2  + r  Ot Ox Oz Or OZ 2 ) ~ ~ A 2 Ha ~- r 2 ~ 

 rl,2,,au;} 
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5 Boundary conditions 

The normal velocity components are zero on the boundaries. Accordingly, the stream 
function is a constant there; we have set the Constant to be zero. The boundary condition 
for vorticity is derived from the vorticity transport equation. Temperature is uniform at 
T w on the curved boundaries, so that 0 = 1 there, and the end walls are adiabatic. 

6 Solution Procedure 

The equations were solved by finite differences, using forward differences in time and 
central differences for all spatial derivatives. The resulting FDAs were solved by the 
Samarskii-Andreyev ADI scheme using the false transient technique. Convergence was 
tested by checking the norm of the relative change of all variables (~ , ~ , F and 0 ) 
over the entire solution region, as well as by computing the norm of the residuals of  all 
equations (in their stationary form) over the solution region. 

7 Results 

Solutions have been computed for a range of values of radius ratio [3 and Dean number 

De.  All results presented here are for A = 15; P r  = 0.7, 5' = 1.63, B r  = 1.5944 x l 0  4, 

[3 e = 1.767, H a  = 0.1679. The mesh size used was 11x181; a test of  21x181 showed a 
change in solution characteristics of 2% or less and the extra computing cost associated 
with the finer mesh was not felt to be warranted. 

For a given radius ratio, three classes of solution were obtained, depending upon De.  At 
low values o f  De ,  the flow consisted of a simple circumferential motion modified only by 
the no-slip condition at the walls. The stream function showed two weak cells at each 
end of the annulus, and the radial and axial motions were essentially zero. The 
temperature 0 and circumferential velocity v increased monotonically from their wall 
values (1 and 0 respectively) to a maximum in 
the centre of the solution region. Above a 
certain critical Dean number D e  l, however, a 
multi-cellular motion in the r -z  plane was 
formed, superimposed on the circumferential 
motion, and reminiscent of the Taylor vortex 
phenomenon. The distributions of  0 ,~ and v 
shown in Figure 1, show this flow. 

The steady, cellular motion persisted up to a 
further critical value, D e  u . Beyond this second 
critical value, the solution became unsteady and 
oscillated periodically. Although the false 
transient solution procedure does not permit an 
accurate tracking of these oscillations, 
computational experience shows that it enables 
the limit between the steady and unsteady multi- 
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Fig. l: Contours of (a) 0 (b) ~p (c) v 
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cellular regions to be established. As a 
function o f  radius ratio rl, the critical Dean 

numbers are - for the fixed values o f  the 
other parameters as listed above, 

D e  I = 2 9 . 8  + 7 . 6 9 / r  I 

D e  u = 3 4 . 8  + 7 . 6 9 / r  I 

Figure 2 shows the three regions. The region 
of  steady cells is quite narrow. In the 
unsteady region, cells are also observed at the 
values o f  D e  investigated. However, the 
present code does not allow the three- 
dimensionality, which is likely to arise at a 
sufficient value of  D e ,  or the true transient 
behaviour of  the flow, to be computed. 
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Figure 2: Stability limits 

The secondary flow affects the rate of  heat transfer, especially at the outer surface of  the 
annulus, as shown in Figure 3 
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Figure 3: Local heat transfer coefficients 

8. Conclus ion  

It has been shown that, at sufficiently high Dean number, a multi-cellular secondary flow 
is imposed on the circumferential base flow, with a consequential effect also on the axial 
distribution of  the heat transfer. The similarities to the Taylor and Dean instabilities are 
remarkable. 
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T U R B U L E N T  T R A N S O N I C  F L O W  OVER A DELTA-WING 
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1 IMHEF/EPFL, CH-1015 Lausanne, Switzerland 
2 FFA, S-16111 Bromma, Sweden 

z C2M2/KTH, S-10044 Stockholm, Sweden 

1 In t roduc t ion  

Even though the geometry of a delta wing is reasonably simple, it Still is a chal- 
lenging problem to simulate with quantitative accuracy the vortex-dominated flow 
over the wing at high angle of attack. The reasons for this are: that multiple vortices 
(primary, secondary, and even tertiary vortices) interact in complex ways, that to 
obtain the correct separation of the boundary layers which create these vortices is 
difficult, that shock waves may interact with the vortices, and finally that the flow 
is turbulent and needs to be modelled. For these reasons this problem has become 
something of a standard for validation of Navier-Stokes solvers, e.g. [1]. 

The wing we have chosen to study here is the delta with 65 ° sweep angle that 
NASA Langley is measuring in its NTF cryogenic windtuunel. What makes this case 
unique for validation is the wide range in Reynolds number at which experimental data 
have been obtained, approximately between 10 and 150 millions. Here the challenge 
is even greater because the boundary layer and separating shear layer are thinner and 
the mesh spacing has to decrease to resolve them properly. 

We have agreed with Langley to exchange our data for a number Of cases that 
are of common interest. In this report we concentrate on a numerical study of one 
flow condition, M~ = 0.85 and a = 12 °, at two Reynolds numbers, 9 and 72 million, 
in both laminar and turbulent flow. This paper reports the progress of our work 
including the Reynolds number effect on our computations and the difficulties we 
have encountered in computing high Reynolds number vortex flows. 

2 Numer ica l  Approach 

Our past work [2] has studied vortices that develop over blunt delta wings in 
laminar hypersonic flow for relatively low Reynolds number. This was carried out with 
a single-block Navier Stokes code. A multiblock Euler code has also been developed 
for inviscid hypersonic flow [3]. These two efforts have led now to the multiblock 
Navier-Stokes solver NSMB, and we present first results here for turbulent transonic 
~OW. 

We briefly outline the by-now rather standard finite volume approach we take, to 
solve the Reynolds-averaged Navier-Stokes equations written in Cartesian coordinates 
over a control volume )2 with boundary 0V 

0 o-T f f f f fov -(u).nds=o (1) 
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where the vector of state variables u = (p pu pv pw pE)  T contains density p, 
x, y, and z components of velocity u, v, and w, and energy per unit mass E. The 
x direction is aligned with the body axis. The flux vector ~" is composed of inviscid 
and viscous parts 

.T" = (171 - Fv)e = + (G I - -  Gv)ey + ( H r  - I - I v ) e  , (2 )  

in the x, y, and z coordinate directions, respectively. The Baldwin-Lomax model with 
the Degani-Schiff modification completes the system for the turbulent viscosity and 
heat conduction coefficients. 

The solver uses a ~:ell- centered discretization in space with explicit Runge- Kutta 
time stepping. The convective flux at a cell face is computed as the flux of the weighted 
average of the two state variables to the left and right of the face. The gradients of the 
velocities and the temperature in the viscous terms are computed at the cell vertices 
using a staggered grid. The gradients at the cell faces are obtained by averaging of 
the cell vertex gradients leading to a compact stencil for the second derivatives. 

To stabilize the numerical discretization, an artificial smoothing term consisting of 
a nonlinear blend of second and fourth differences is added to the numerical scheme. 
The smoothing terms are scaled by the local eigenvalue in each coordinate direction 
for the Navier-Stokes solutions to better handle the high aspect ratios of the mesh 
in the boundary layer. It is very important to treat the numerical smoothing terms 
correctly near the boundaries in order to maintain good convergence and to keep the 
variations in entropy small. 

The spatially discretized equations are integrated in time with a standard explicit 
four stage Runge-Kutta scheme that uses the usual local time step scaling. The time 
integration is augmented by an optional implicit residual smoothing procedure. 

The usual no-slip boundary conditions are enforced on the wing. The farfield is 
assumed to be inviscid and is treated either by setting or extrapolating the locally 
one dimensional Riemann invaxiants. The condition for pressure on the wing surface 
is set by second order extrapolation from the field values. 

The use of multiple patched blocks is novel. In principle the method permits the 
use of an arbitrary number of patched blocks. To reduce memory requirements, the 
allocation of space for the variables is done block by block using a Dynamic Memory 
Manager (DMM) [4]. Temporary storage is allocated only for the largest block. The 
solver uses the MEM-COM data base system [4] as data structure. The grid system 
and calculated results are stored in MEM-COM block by block, and can be accessed 
independent of each other. The main advantage of using a data base system is that 
all data required for a flow simulation is stored in a single data base file. Exchange 
of information between the different processes (grid generation, solving the equations, 
flow visualization) is done via the data base file. 

3 C o m p u t e d  Resul ts  

We focus on the NASA-Langley NTF Experiment of laminar as well as fully tur- 
bulent flow over a 65 ° swept delta wing with a round leading edge and adiabatic wall 
conditions at 12 ° angle of attack, Mach number of 0.85, and two R e  numbers: 9.0 x l0 s 
and 7.2 x 107 based on the root wing chord. These are our first results with this code 
for turbulent transonic flow, and these two cases axe initial verification of the code. 
We experienced more difficulty to reach convergence at the higher Reynolds number 
than at the lower one. Becket [5] also reported difficulty in studying this wing. 
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3.1 Mesh  

With the mesh spacing normal to the wall set to resolve the higher Reynolds 
number case, we choose a C-O type of mesh around the delta wing that envelopes 
the wing back to the trailing edge, and continues to contain the wake downstream 
of the wing (Fig 1). At the finest resolution the two-block C-O type grid contains 
97 x 57 × 81 points. The grid in the streamwise direction extends downstream 3 chord 
lengths. Solutions were obtained by successively refining the mesh from a coarse to 
a medium and then to a fine resolution numbering approximately 448 K points after 
6000 iterations. 

Case l : R e = 9 x 1 0  6 

The particle traces in Fig 2 indicate the vortex flow above the wing. The isobar 
contours on the upper surface (Fig 3) also show the footprint of the vortex as a pressure 
trough. Figure 3 also presents isobars in the plane at the 40% chord station, indicating 
a secondary vortex. The comparison of surface Cp along the span (Fig 4) shows that 
the position of the vortex is somewhat more inboard in the computations than in 
the measurements. That there is little difference between the laminar and turbulent 
computations is unreasonable, and suggests that our turbulence model provides too 
little turbulent viscosity. 

Case 2: R e = 7.2 x I0 z 

To reach convergence for this case we had to increase the artificial viscosity very 
substantially. The results must be viewed with this in mind. This may explain why 
the pressure trough (Fig 5) is not as deep as in Fig 3 and the absence of a secondary 
vortex in the isobars in the plane at the 40% chord station. The comparison of surface 
C v along the span (Fig 6) shows a lower suction level in the computed pressure than in 
the measurements, which is also expected. At this time we have no good explanation 
of what causes our convergence problems, and we can offer no remedies. It is however 
significant to point out the very substantial differences between the experimental Up 
values for the low and high Reynolds number cases (Figs 4 and 6). 

This suggests that there is in fact a dominant effect on the flow with increasing 
R@nolds number. How to treat this effect numerically in order to obtain an accurate 
solution remains for future work. 

Fig. 1 Two-block C-O type mesh 
around delta wing 
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Fig. 2 Streamlines over delta wing 
showing vortex 

1.8] Preslure coefficient 
1.6 at x:40% of chord length 
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Fig.  4 Comparison of computed and 
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surface, x/c = 0.4, R e = 9.0 x 10 6 
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Q u a s i g a s d y n a m i c  e q u a t i o n s  a n d  c o m p u t e r  
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o f  v i s c o u s  g a s  f l o w s  

Elizarova T., Chetverushkin B., Sheretov Yu. 

Institute for Mathematical Simulation Russian Akademy of Science, 
Moscow 125047, Miusskaya sq.,4 

June 25, 1992 

1. Quasigasdynamic model. 
Quasigasdynamic (QGD) equations may be constructed using the next assump- 

tion. Assume that kinetic model for the behaviour of the distribution function 
f (x ,  ~, t) is a cyclically recurring process of collision - free scattering of gas molecules, 
followed by instantaneous Maxwellization. So distribution function in a new time step 
t j+l may be defined with the help of the expression 

fJ+l (x, ~, t) = /0 J (x  - ~7, ~, t) (1) 

where fo j is the locally - Maxwellian on the time layer t j ,  ~" = t j+l - t j is a 
characteristic mean collision time. 

Expanding (1) in a Taylor series in the parameter ~r we will have a model kinetical 
equation [1]. In standard notations it looks in the next way [3] 

f t  + (~V)f - ( (V)T((V)f  = i f ( f ,  f ' )  (2) 

Then we successively multiply (2) by the summation invariants cy(~) = 1, ~, 0.5~ 2 
and integrate over all molecular velocities (. Then we will have the system of differ- 
ential equations for the macroparameters - QGD model [1], [2]. In invariant form it 
may be written in the invariant form [3] 

Pt -~ d i v p u  = d l v ' r ( d i v p u  ® u + gradp)  (3) 

(pu)~ + div(pu 0 u) + g~adp = 
= diwdivp~ 0 ~ 0 u + W(V e pu) + g~ad~divp~ + W-(V ® p~) (4) 

E~ + div((E + p)u) = div~(div(E + 2p)u ® u + grad;/p(E + ;)) (5) 

By augmenting (3) - (5) with the equations of state of an ideal gas 
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E = p(u2/2 + e), e = P/P('7 - i )  (6) 

and, also, the initial and boundary conditions, we obtain a closed system of equa- 
tions which describes the space-time evolution of the macroscopic parameters of the 
gas: u - velocity, p - density, p - pressure, E - energy. Where r = A/c  - characteristic 
relaxation time for gas molecules, c - sound velocity , A - molecule free-pass. 

2. QGD and Navier-Stokes system correlation. 
Correlation QGD and Navier-Stokes equations is analysed [3]. It is shown that in 

the case of one particle Boltzmann gas the asymptotic of QGD equations when A --+ 0 
are Navier-Stokes equations in the form ( A assumed to be a small parameter).  

pt + divpu = 0 (7) 

(pu)t + div(pu  ® u) + gradp = diver (s) 

E, + d i v ( ( E  + p)u) + divq = divucr (9) 

where 

= , ( ( v  ® u) + ( v  o u) r - 2/31divu) 

q = - a V T  

Viscosity and heat-conductivity coefficients correspond to one-particle gas model and 
are represented in the form # = pr,  a = cppr and Prandtl number P r  = 1. 

Particularly in boundary layer approach QGD equations degenerate to Prandt] 
equations [2]. 

QGD system requires the formulation of additional boundary conditions compared 
with Euler or Navier-Stokes equations. It is the sequence of the second order space 
derivatives in the right hand of the equation (3). This additional boundary condition 
for pressure may be written in the form Op/On = 0. It ensures that there is no mass 
flow through the solid wall. 

3.Entropy equation. 
For the QGE system the equation for entropy S = c, l n p / f  + So was constructed 

in the form: 

(pS)t + divpuS = avvdivpSu ® u + divrSgradp+ diva(VT)/T + ~Qa/T + a(VT/T) 2 
(10) 

Here we have used the dissipative function (I)Qa that was build up for QGD equa- 
tions. This function is rigorous positive and is defined as the sum of Navier-Stokes 
dissipative function ~Ns and the left hands of stationary Euler equations in square 
with positive coefficients [3] 

• o~ = ~ + ~P/#ffdivpu) ~ + r l p ( p ( u V ) u  + Vp) 2 -F r/(ps)O(uV)s + pdivu) 2 ( i i )  
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From (10) it turns out the suggestion about a rise of the full thermodynamic 
entropy function for adiabatically isolated system in the form 

d-i (pS)dx > o 

The equal sign takes place at the equilibrium state. We supposed that the domain 
boundary is piecewise smooth. 

It is known that similar results were obtained for Navier-Stokes system. Recently 
the similar results were obtained for hydrodynamic equations with thermal diffusion. 

4. Shock-wave structure problem. 
Here we consider the problem about the structure of a static shock wave. It is 

known that  the solution of that problem based on Navier-Stokes equations for Mach 
numbers M >_ 2 is disagreed with the experimental data. 

The problem is examined basing on QGD system in plane one-dimensional form 

Op Opu O 0 
O--t + c3~ - c3xT~_ (pu2 + p) (12) 

Opu 0 0 O,  3 . 
0~- + b-]z (Pu2 + p) = Yzzz~zz (pu + 3pu) (13) 

OE 0 0 0 2 
o-T+ u(E+p)= ~ . ~  (E+5/2p)~ 7_ 0 p Op, 7 P r  -1 0 Op/p (14) 

3' l f z p r O x ± T - - - i  ~ P ~ ' - - ~ z  

Here parameter ~- is.taken in accordance with 

~--- (po~-o)(T/To)'/p (15) 

and is represented as characteristic relaxation time for gas molecules. For (12) 
- (14) we have used the spatial discretization of the second order. The resulting 
equations are solved by time-relaxation method. As initial data we choose parame- 
ters of the flow according with the Hugoniot conditions. We take into consideration 
ideal polytropical one-particle gas 7 = 5/3, P r  = 2/3, S = 0.72. The results of the 
computations are represented in Fig.1. 

The normalized shock thickness is plotted against the Mach number for moderate- 
strength shock range. For comparison experiments, Navier-Stokes and Mort-Smith 
solution are plotted together. These are reproduced from [6]. It is seen that QGD 
solution correlates much better with the experimental value than Navier-Stokes one. 
This investigations are now being continued. 

5.Kinetical-Consistent Finite-Difference Schemes. 
Based on the kinetical model mentioned at the beginning of the paper kinetical- 

consistent finite-different (KCFD) schemes were constructed in [1]. For viscous heat- 
conducting flows KCFD schemes were obtained in [2]. The same result was obtained 
by averaging finite-difference scheme for model kinetic equation (2). The system (3) 
- (5) can be used for the KCFD scheme construction in the next manner. 

We note the superficial similarity between a number of the terms occurring in the 
QGD system and the corresponding terms in the Navier-Stokes equations. So it is 
possible to replace this terms by the Navier-Stokes terms and to consider them as 
the natural viscosity and thermal conductivity. (Mainly it is shifted viscosity terms). 
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Figure 1: Shock thickness ~1/* versus M, solid line- QGD solution, A - Navier-Stokes 
solution, [] - Mott-Smith solution, o - experiment 

In fact those terms have the maximum order of magnitude in the boundary layer 
approximation. Other terms in right hands (3) - (5) are transformed by replacing the 
characteristic mean free pass A by step size of the spatial mesh h in the way r ~ h/c. 
So in this terms r is supposed to be a characteristic time for gas-particle to pass a 
computational cell h. Mentioned terms are considered as mesh regularizers which 
play the role of the artificial viscosity. Moreover, this terms are small compared wltli 
natural viscosity close to solid walls. This manner of choosing r in QGD equations 
provides for KCFD schemes an integral transition from simulation a nonviscous parts 
of the flow to those regions, where function of viscosity and heat conductivity is 
important. KCFD schemes are shown in [2], [4] and [5]. 

Here is an example of KCFD scheme for momentum equation for plane 3-D flow 

(pu), + (pu: + + + = 

M~/Re~((fu~)y + (#u~)z) 

Based on KCFD schemes a number of supersonic flow problems both stationary 
and non-stationary types have been carried out. Particularly it was computer simula- 
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tion of supersonic flows in boundary layers, in the vicinity of cavities and steps, flows 
near airfoils. Also we investigated pulsating regimes accompanying supersonic flows 
round a hollow cylinder and a spiked bodies. 

KCFD schemes in explicit form are suitable for implementation on powerful 
MIMD-type computers, particularly on transputer systems. The computations of 3-D 
separation flows were made on massively transputer system [5]. The investigations in 
this field are supported by Russian Transputer Association. 
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EFFECTS OF ANGLE OF ATTACK ON THE LEADING 
EDGE ATTACHMENT LINE 

J o l e n  F iores  

Fluid Dynamics Division 
NASA Ames Research Center 
Moffett Field, CA 94035, U.S.A. 

I n t r o d u c t i o n  

A major design parameter  for future transport aircraft is fuel efficiency. The 
ae rodynamic  ef f ic iency of  a i rcraf t  conf igura t ions  can be improved  through 
increases in lift  and/or decreases in total drag. Skin fr ict ion contributes a 
large portion to the drag of an aircraft. In fact, turbulent skin friction can 
contribute up to 50% of  the total drag for a subsonic transport. A method to 
reduce the turbulent  skin fr ict ion is through natural laminar  flow (NLF) or 
laminar flow control  (LFC). The purpose of  the current work is to analyze 
transi t ion mechanisms (e.g. at tachment line locat ion and crossf low veloci t ies)  
near a swept wing leading edge. Flow visual izat ion is used to study the 
influence of  angle-of-at tack on the aforementioned transit ion mechanisms. A 
three-dimensional  Navier-Stokes  code is used to computa t ional ly  s imulate  the 
flow about a highly swept wing-fuselage configuration. The flow solver used 
in this study is the Transonic Navier-Stokes (TNS) code. This code uses a zonal 
approach to solve complex configurations.  Zones used in the TNS code are 
overlapped in order to exchange zonal boundary conditions. The TNS code 
has been previously used to compute the flow about different types of  wings 1 
and w ing - fu se l age  geomet r i e s  2. Recently,  the numerical  simulation of  flow 
about  the comple t e  F - 1 6 A  for t ransonic  condi t ions  and at yaw 3 was 
a c c o m p l i s h e d .  

Re s u l t s  and D i s c u s s i o n  

The f i r s t  numer i ca l  s imu la t i on  was conduc t ed  with  f low c ond i t i ons  
approximately matching the flight conditions (i.e., Minf = 1.6, ct = 2.0 ° and a 
R e L =  116 mill ion).  The Reynolds  number is based on the fuselage length. 
These  f low condi t ions  are hereaf ter  referred to as the base  condi t ions .  
Nineteen zones were used for the computation with a total of one mill ion grid 
points. This required approximately 2500 iterations to drop the initial L2-norm 
in each zone by three orders of  magnitude. On the NASA supercomputer this 
required approximately 13 hours of  cpu time. 

Figure 1 shows a planform view of the surface grid used in the computations. 
Not shown, but  modeled,  are the inlet,  diverter  and environmental  control  
system on the underside of  the geometry.  Instrumented on the actual fl ight 
configuration is a fitted glove on the upper surface of the wing. The glove is 
located on the left wing inboard of the wing-break. The inboard (beginning 
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of the glove) location is at a semi-span value of approximately 72 inches and 
the outboard (end of  the glove) location is at a semi-span value of 114 inches. 
Figure 2 i l lustrates the pressure contours on the symmetry plane. Shocks can 
be seen at the nose, canopy and lower lip of  the inlet on the geometry. The 
smoothness of  the contours,  even though they are traversing different  zones, 
is a l s o  noted. An expansion wave at the top of  the canopy, as well as a 
recompress ion shock at the back of  the canopy,  can also be  seen. These 
reg ions  cause  adverse  pressure  gradients  which can cause the  f low to 
s e p a r a t e .  

Sensitivity Study 

The fo l lowing resul ts  represent  a sensi t iv i ty  study on the at tachment  line 
locat ion and boundary layer veloci ty  profi les for c~ = 0.0 o,  2.0 ° , and 3.67 ° . 
F igure  3 i l lustrates the at tachment line along the span, between the inboard 
and outboard portion of the glove. The experimental data points exist only at 
the inboard and outboard stations. The vertical axis indicates the posi t ion of  
the attachment point, either on the upper surface (posit ive x) or on the lower 
surface(negat ive x). The leading edge i tself  is at x = 0.0. There are twenty 
equa l ly -spaced  in terpola ted  span stat ions between the inboard and outboard 
stations. The stagnation point, at each span station, was determined by finding 
the gr id  po in t  co r respond ing  to the maximum pressure  coeff ic ient .  The 
exper imenta l  s tagnat ion posi t ions  at the inboard and outboard stat ions were 
also determined in a similar  manner. Therefore the true stagnation points for 
the computa t ions  (and exper iment)  may actual ly  occur between grid points  
(and pressure taps). This explains the jagged appearance of  the computat ional  
a t t achment  l ine.  

At the inboard station, increasing the angle of attack from 0.0 o to 3.67 ° moves 
the computat ional  stagnation point from the upper surface of  the wing to the 
lower surface of  the wing. A similar trend occurs for the outboard station as 
well. Notice that for the 0.0 and 3.67 ° cases, the outboard stagnation point is 
further downstream than the inboard points. This is due to the " 'e f fec t ive  
angle of  attack" at the outboard station which is larger in magnitude than the 
angle of  attack at the inboard station. That is, each span station creates a line 
vor tex  which changes the effect ive angle of  a t tack for the adjacent  span 
station outboard. A change in angle-of-attack is therefore expected to have a 
greater  effect  on the outboard attachment point. Exper imenta l ly ,  the locat ion 
of  the inboard and outboard attachment points indicate the same trends. 

Figure 4 illustrates the flow about the leading edge in a cross-flow plane. The 
geometry of the leading edge is outlined in black, with a black horizontal line 
indicating the leading edge point. At the inboard station, the flow about the 
leading edge is i l lustrated and the stagnation point can be seen to be sl ightly 
above the leading edge. At the 82 inch span station, the flow near the leading 
edge exper iences  a posi t ive  angle-of-at tack.  Again, this is due to upwash 
effects  from the adjacent  inboard  s ta t ions  which increases  the e f fec t ive  
angle-of-at tack.  At the 114 inch station, it appears that the effective angle-of- 
attack has decreased relat ive to the 82 inch span station. The attachment line, 
being extremely close to the leading edge, is very sensit ive to small changes 
due to upwash effects and results in the small perturbations of  the attachment 
line location about the wing leading edge. 

Simulated oil flow patterns are conducted near the leading edge of  the wing. 
The flow patterns should reflect  what has been discussed in Figs. 3 and 4. 
Figure 5 shows three different sections of  the wing leading edge. The location 
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of the leading edge of  the wing is indicated by the leading edge grid line 
arrow. The attachment line is the dividing streamline where the part icles go 
onto the upper and lower portion of  the wing. Examining the flow at the 
inboard part of  the wing (Fig. 5a) it can be readily seen that the attachment 
line is located on the upper portion of  the wing. The flow at the middle portion 
(Fig. 5b) of  the wing now indicates that the attachment line has moved to the 
lower surface of  the wing. Finally, as the outboard part of the wing (Fig. 5c) is 
approached, the attachment line is right at the leading edge of the wing. As 
the flow proceeds down the wing the attachment line can be seen to move to 
the upper surface. 

The effect of  different  angles-of-at tack on the crossflow profi les  is i l lustrated 
in Fig. 6a at x/c = .7%. As the angle-of-attack is increased from 0.0 o to 3.67 ° , 
the maximum crossflow kvelocity decreases at a given location. As the angle of 
a t tack is increased,  the s tagnat ion point  is pushed further underneath  the 
leading edge to the lower surface .  The crossflow veloci ty  profi les  are also 
rotated towards  the s tagnat ion poin t  y ie ld ing  a lower  maximum crossf low 
value at a fixed chord station. Since the location of a given crossflow velocity 
value  moves  forward,  o n e  would expect  that increas ing a lpha will  move 
t ransi t ion due to crossf low ins tabi l i ty  upstream. Decreas ing  the angle of  
attack appears to lower the height of  the inflection point. 

Figures 6b and 6c show the crossflow profiles at two more stations downstream. 
The same trend continues,  i.e., decrease  in angle of  at tack increases  the 
maximum crossflow velocity at a given location. The location of the inflection 
point becomes more difficult  to ascertain as the profiles have less curvature. 
But qual i tat ively,  Figs. 6a-6c i l lustrate the effects of  different  angles-of-at tack 
on the maximum crossf low component  and the associa ted  inf lec t ion  point  
l o c a t i o n .  

S u m m a r y  

The computat ional  results presented show good agreement with existing fl ight 
test data. A parametric study on the sensitivity of attachment line location and 
crossflow profiles to alpha was conducted. For the 2 ° case, the attachment line 
is very close to the leading edge. However ,  for c~ = 0.0 o and 3.67 o, the outboard 
a t tachment  poin t  moves much further downst ream re la t ive  to the inboard 
at tachment  point. At different  angles-of-at tack the boundary layer thickness 
and s t ream-wise  ve loc i ty  prof i les  do not change s igni f icant ly .  There is, 
however ,  a s ign i f i can t  change  in the c ross f low ve loc i t y  p ro f i l e s  with 
d i f ferent  angles-of -a t tack .  The trends exhibi ted  in the crossf low ve loc i ty  
profiles indicate that as the angle of attack is decreased from 3.67 ° to 0.0 °,  the 
maximum crossflow velocity at a fixed location increases. 
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UPPER SURFACE GRID FOR HALF-MODEL 

Fig .  1 T o p  p e r s p e c t i v e  o f  the  s u r f ace  g r id .  
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F i g .  2 S y m m e t r y  p laRe  p r e s s u r e  c o n t o u r s .  
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FINITE ELEMENT SIMULATION OF TRANSONIC 
FLOWS WITH SHOCK WAVES 

M. Hafez and D. Kinney 
University of California, Davis, CA 95616 

Introduction 

Accurate and efficient tools are still in demand for analysis and design of transonic aerodynamic 
configurations. In this paper, the artificial viscosity method is adopted to solve the transonic 
potential flow equation. Several forms are studied. Finite elements techniques are employed to 
allow for handling complex geometries using unstructured grids. The advantage of using higher 
order elements even in the presence of strong shocks is explored. Comparisons of linear and 
quadratic elements on triangles as well as bilinear and biquadratic interpolations on four sided 
elements demonstrate the new capabilities of the proposed formulation. Application of the start "dard 
Galerkin procedure results in a nonlinear system of algebraic equations which are solved using 
both Newton's method with direct banded Gaussian elimination at each iteration as well as with a 
preconditioned conjugate gradient type algorithm. It is shown that the latter is more efficient even 
for a moderate size problem. Finally, possible extensions to three dimensional problems are 
outlined. 

Governing Equations 

For stead.y inviscid and adiabatic flows over a body, the fluid motion can be described by the 
conservataon laws of mass, momentum and energy. For smooth subsonic or supersonic flows 
(with no shocks), the total derivatives of both entropy and total enthalpy vanish, hence if the 
incoming flow is uniform, the flow remains isoenergetic as well as isentropic. It follows, from 
Crocco's relation that the vorticity is identically zero and a potential function exists such that 

where q is the velocity vector. 

The governing equations become 

~ = V  0 (1) 

where 

V.  pV~b = 0 (2) 

p =(1 7-1 2 "t-I (3) -TM (Iv, F 1)) 
In the above formula, p is the normalized density and M~ is the free stream Mach number. 
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The pressure coefficient is given by 

Cp= 2(p 't- 1)/(yM2**) (4) 

__9 1 1 1 9 1  As  M~.--~0, p --el and C1, ----) (1-lV¢ [~I which is consistent with Bernoulli's law for 

incompressible flows. 

For transonic flows with shock waves, the potential flow model consists of conservation of mass 
and energy. The momentum equations are replaced by the irrotationality and isentropic conditions 
and the unbalance of momentum produces the wave drag. For more details see ref (1). 

Numerical Method 

The potential as well as Euler equations admit both expansion and compression shocks. To 
exclude the nonphysical solution (negative drag), and to guarantee numerical stability in the 
supersonic flow regions, artificial viscosity is introduced in the above formulations. 

One choice is to modify the density relation to read 

p = ( l - T - I  . 21 Ghp Iv, I=- l)) (3') 

where ~-~ is the derivative along the particle path and }.t is a parameter function of Mach number. 

Alternatively, the continuity equation can be augmented with derivatives of the density in the form 

V.pV~ = V.eVp (2') 

where e is the artificial viscosity coefficient. 

Another modification, consistent with the potential flow model conserving mass and entropy, can 
be derived by integrating the momentum equation including the artificial viscosity terms 

Assuming the flow is isentropic and taking the curl of equation (5) yields 

(5) 

a(v.¢)- ?o.Vq'=  v2ff, 
Dt 

(6) 

Equation (6) admits a zero solution, hence the flow can be irrotational even in the presence of 
artificial viscosity. Moreover, equation (5) can be integrated to give a modified Bernoulli's law 
including the artificial viscosity effects as 
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- ~ . t v , ~  I lV~b 12.2g:V2q~ (3") 

Notice, the total enthalpy H, is no longer constant, instead: H -'~V2~b = H~. 

In the present work, the above forms of artificial viscosity have been tested using a standard 
Galerkin finite element method. For more details see ref (2). A combination of (2') and (3") is 
recommended. 

Summary of Results 

Three issues are addressed briefly: 

i) Flexibility and quality of unstructured grids. 
ii) Accuracy of the solution in the presence of shock waves. 

iii) Efficiency of calculations based on a preconditioned conjugate gradient type procedure. 

To demonstrate the capability of unstructured grids, triangular elements are used to discretize the 
flow over a cylinder in a tunnel. The distributions of the nodes along the tunnel walls and the 
cylinder surface are prescribed and the grid size is smoothly varied in the domain as shown in 
figure (I-a). An automatically refined mesh is produced in figure (l-b). Both linear and quadratic 
interpolations have been considered with triangular elements. For four sided elements, the results 
based on bilinear and biquadratic interpolations are compared for the test problem proposed by a 
GAMM workshop for transonic flows over a parabolic arc in a tunnel. In figure (II-a) the surface 
pressure distributions are shown for M~ = 0.85. The density contours are given in figures (lI-b) 
and (II-c). The calculations based on the higher elements produce basically the same sharp shock at 
the same place. As expected, fewer higher order elements are needed in the smooth part of the 
flow. The efficiency of the calculations for a moderate size problem (17 x 117) is shown in figures 
(III-a) and (Ill-b). Quadratic convergence is obtained with Newton's method if a direct solver is 
used at each iteration. The direct solver can be replaced, however, by a conjugate gradient 
algorithm for nonsymmetric systems, with SSOR as a preconditioner (see ref. (3)). The total 
number of the CGSTAB steps, when the solution converges to machine accuracy at each Newton's 
iteration, is 2474. With adaptive convergence strategy, the above number is reduced to 872. In 
terms of CPU time as well as storage, CGSTAB is superior. 

Currently, the CGSTAB algorithm is applied to three dimensional flow problems using linear 
tetrahedral as well as trilinear elements. With higher order interpolations, the density can be 
eliminated and only one equation for ~b, including the artificial viscosity terms, is solved. 
Preliminary results indicate that such a strategy is promising. 
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Fig. (I-a) Unstructured Grid For a Cylinder in a Tunnel 
Nodes 1848, Elements 3482 

Fig. (I-b) Mesh Refinement: Nodes 2812, Elements 5372 
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Navier-Stokes Analysis and Experimental Data 
Comparison of Compressible Flow Within Ducts 

G. J. Harloff,', B. A. Reichert,** J. R. Sirbaugh,*, S. R. Wellborn + 

*Sverdrup Technology, Inc., LeRC Group, Brook Park, Ohio, **NASA Lewis 
Research Center, Cleveland, Ohio, +Iowa State University, Ames, Iowa 

Introduction 
Many aircraft employ ducts with centerline curvature or changing cross-sectional 

shape to join the engine with inlet and exhaust components. S-ducts convey air to 
the engine compressor and circular-to-rectangular transition ducts connect the engine 
to the rectangular nozzle. Changes in duct centerline curvature or cross-sectional 
shape give rise to streamline curvature which cause cross stream pressure gradients. 
Secondary flows can be caused by deflection of the transverse vorticity component 
of the boundary layer. This vortex tilting results in counter-rotating vortices. 
Additionally the adverse streamwise pressure gradient caused by increasing cross- 
sectional area can lead to flow separation. Vortex pairs, due to secondary flows 
induced by pressure gradients resulting from streamline curvature, occur in the exit 
planes of both S-duct and transition duct flows. The purpose of the present study is 
to predict the measured flow field in a diffusing S-duct and a circular-to-rectangular 
transition duct with a full Navier-Stokes computer program, PARC3D, and to 
compare the prediction with new detailed experimental measurements. The work 
extends previous S-duct studies 1'2, provides additional CFD validation data, and 
compares results for both Baldwin-Lomax and k-E turbulence models. For the 
transition duct both straight and swirling inflow conditions were considered. 

Experimental and Numerical Methods 
The geometry of the circular diffusing S-duct is shown in Fig. 1. The duct 

centerline is defined by two circular arcs in the xz-plane with identical radii, R, and 
subtended angle 0 of 30 °. The ratio of the centerline curvature to the inlet radius 
is R/R~let = 10. The axial position, s/D b is along the duct centerline from the inlet, 
normalized by the inlet diameter. The polar angle, if, is measured from the vertical 
in a positive clockwise direction. The duct offset is 1.34D1 and the length is I/Dz = 
5.23. The diameter increases with s/D~ and the area ratio is Az,/A ~ = 1.52. 
Upstream of the inlet and downstream of the exit are straight pipes. 

The circular-to-rectangular transition duct is shown in Fig. 2. Thex-axis is along 
the duct centerline and the y- and z- axes are parallel to the major and minor axes 
of the duct exit. Axial locations are described in terms of x/D 1. The duct is 
symmetric with respect to reflections across the horizontal xy- and vertical xz-planes. 
The duct cross section in the yz-plane changes from circular to nearly rectangular in 
the region 1.0 < x/D1 < 2.5. The duct aspect ratio (ratio of major to minor axis 
lengths at x/D~ >_ 2.5) is 3.0. The cross-sectional areas at x/D~ < 1.0 and x/D~ >_ 
2.5 are equal. In the region 1.0 < x/D~ < 2.5 the cross-sectional area increases to 
1.15 times the area at x/D1 <- 1.0. 
Experiment 

The inlet diameter of both the S-duct and transition duct was 10.24 cm. The 
inlet conditions for both ducts are summarized in Table 1. For the transition duct 
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experiment ~'2 with swirling flow, the maximum swirl angle was 15.6 °. A swirl 
generator was used to produce solid body rotation. Additional information about the 
experiment is contained in Refs. 3 and 4. 

Detailed measurements of velocity, total and static pressure were made at cross- 
stream planes inside both ducts. Data were acquired at about 530 locations near the 
S-duct inlet (at s/D~ = -0.5) and at nearly 1220 locations near the S-duct exit (at s/D~ 
= 5.73). In the transition duct, 480 measurements were made in four cross-stream 
planes located at x / D  1 = 1.49, 1.99, 2.55, and 3.93. Surface static pressure 
measurements were obtained for both ducts. 
Computation 

The PARC3D s computer program solves the full, three-dimensional Reynolds- 
averaged Navier-Stokes equations in strong conservation form with the Beam and 
Warming approximate factorization algorithm. The implicit scheme uses central 
differencing for a curvilinear set of coordinates. A Baldwin-Lomax 6 algebraic 
turbulence model was used. The model was modified to use only vorticity in the 
local boundary layer 7 and for the swirling flow transition duct computation the 
constant level of axial vorticity was removed from the vorticity in the boundary layer. 
For the S-duct computation a low-Reynolds number k-e turbulence model of Speziale 
et al. 8 was also used as implemented by Nichols 9. 

The S-duct grid was composed of three blocks with grid distributions of 32 x 71 
x 53, 69 x 71 x 53, and 32 x 71 x 53 and an H-grid of 129 x 11 x 15 was used in the 
center. The first point off the wall had an average y+ of less than 1. The boundary 
conditions were no slip at the walls, inlet total pressure and temperature specified, 
static pressure specified at the exit plane, and symmetry about the xz-plane. 

For the nonswirling transition duct flow the grid modeled one quadrant and 
contained 97 x 51 x 53 grid points. The inlet total temperature and pressure were 
specified locally. At the duct exit, a static pressure was specified and density and 
velocity were extrapolated from the interior. The swirling flow transition duct 
computation was performed with a 97 x 51 x 97 grid that modeled two quadrants, and 
the inlet boundary condition used the measured inlet flow angles. 

Results and Discussion 
The pressure coefficients are defined by Eq.(1) where total pressures is Po and 

p is static pressure. The reference variables, cl (centerline) or wall, were evaluated 
at one-half inlet diameter upstream of eitfier the S-duct or transition duct inlet. 

ClOo=IDo-Pwall/Po, c1-1C)wall " CP=Po-Pwall/IDo, cl -!Owall ( i ) 

Diffusing S-Duct Results 
The computed and experimental surface static pressure distributions are shown 

in Fig. 3. Both the algebraic and k - e turbulence model results agree with the 
experimental values upstream of the experimentally determined separation (shaded 
region in Figs. 3). In the separation zone, the k - E model agrees better with 
experimental values, and downstream of separation both models begin to agree with 
the experimental data. The measured region of flow separation is 2.02 _< s / D  1 < 
4.13 and the k - E and the algebraic turbulence models predict separation between 
2.59 _ s / D  1 <_ 4.25 and 2.69 < s / D  1 < 4.25, respectively. 

Computational and experimental total pressure contours near the S-duct exit 
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(s/D1 = 5.73) are compared in Fig. 4. The predicted region of diminished total 
pressure is smaller than the measured region for both turbulence models. This 
discrepancy is possibly due to a turbulence modeling deficiency to account for with 
strong cross flow (three-dimensional) effects or a modeling deficiency of artificial 
viscosity in the boundary layer separation region. The grid resolution should be 
adequate as the distance of the first grid point off the wall is approximately y+ of 1. 

The predicted velocity profiles for both turbulence models near the S-duct exit 
are shown in wall coordinates in Fig. 5. Near the S-duct exit the vortices have 
convected low velocity fluid away from the wall and the boundary layer in this region, 
particularly at 4~ = 170 °, departs significantly from this law. 
Circular.to.Rectangular Transition Duct Results 

The numerical and experimental values of surface static pressure for both the 
nonswirling and swirling flow cases are plotted in Fig. 6. The prediction is very good 
indicating that the aerodynamic blockage is correctly predicted. Experimental and 
computed contours of the total pressure coefficient at x/D 1 = 2.55 are shown in Fig. 
7 (a) for flow without inlet swirl. The concentric contours extending inward from the 
duct side walls are regions of diminished total pressure that result from side wall 
vortices convecting low total pressure fluid away from the duct surface. The CFD 
results predict the same flow structure at x/D1 = 2.55, but the region of diminished 
total pressure is not as large as the experimental results reveal. Total pressure 
contours at x/D~ = 3.93, Fig. 7 (b) also show that the predicted region of diminished 
total pressure does not extend as far from the side walls as was experimentally 
observed. Comparing experimental and CFD surface flow visualization 7 indicates 
that the point of formation of the vortices is correctly predicted. This suggests that 
the turbulence model, restricted to wall bounded shear flow, can not account for 
turbulent mixing in the vortex region. The agreement outside the region affected by 
the side wall vortices at x/D~ = 2.55 and 3.93 is excellent. 

The total pressure at x/D~ = 2.55 and 3.93 for flow with inlet swirl are shown 
in Figs. 8 (a) and (b). With swirl the flow is symmetric with respect to 180 ° rotations 
about the x-axis. Regions of diminished total pressure near the duct side walls (that 
were produced in the nonswirling flow by the side wall vortices) are absent. 
However, surface oil film visualization 7, indicates cross flow near the duct comers in 
the down-stream region of the duct. The effect of the cross flow on the total 
pressure coefficients is visible, particularly in the upper left (experiment) and lower 
fight (computation) quadrant at x/D~ = 2.55. In general, the agreement between the 
experiment and computation is better for the swirling case (no side wall vortices) 
than the nonswirling case (side wall vortices). This is most apparent at x/D~ = 3.93 
where the comparison in Fig. 8 (b) is noticeably better than Fig. 7 (b). 

Conclusion 
The PARC3D Navier-Stokes code has been used to compute flow through a 

diffusing S-duct and a circular-to-rectangular transition duct with and without inlet 
swirl. The S-duct computed flow fields are generally in good agreement with the 
experimental data. However, both turbulence models underpredict the length and 
angular extent of the boundary layer separation, and the predicted separation occurs 
one halfs/D~ late. Neither algebraic nork  - e turbulence model adequately accounts 
for strong secondary flows with separation. The transition duct flow field matched 
the experimental total and surface static pressure coefficients well. The agreement 
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appeared better for flow with inlet swirl, where the pairs of counter-rotating vortices 
at the duct exit were absent. For attached flow, PARC3D has demonstrated 
reasonable accuracy. However, for strong cross flow or separated boundary layers, 
the modeled turbulence and or artificial viscosity should be improved. 
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M U L T I D I S C I P L I N A R Y  C O M P U T A T I O N A L  A E R O S C I E N C E S  

Paul  Kut l er  

Fluid Dynamics Division 
NASA Ames Research Center 
Moffett Field, CA 94035, U.S.A. 

I n t r o d u c t i o n  

The use of  computat ional  fluid dynamics (CFD) in the aerospace business has 
steadily increased during the past decade and especial ly during the l a s t  several 
years .  The p r imary  reasons  for  this usage are the enhanced,  va l ida ted  
appl icat ions software,  avai lable  computer  power to run that software and the 
past successful application of C F D  to "real world" design problems. According to 
Hoist et. al., 1 computer hardware execution speed has increased by a factor of 
about 15 over the past decade and by over 200 during the past two decades. It 
can safely be said that the increased use of  computat ional  s imulat ions  has 
improved the eff ic iency of  aerospace vehicle performance while at the same 
time reducing their cost to design. 

The discipline of  computational fluid dynamics has proven its value to many in 
the aerospace profession, and it is routinely being used to simulate flows about 
vehic les  and components  that in some instances don ' t  yet  fu l ly  represent  
"real" aerospace configurations.  The overarching goal for computat ional  fluid 
d y n a m i c s  or  m o r e  a p p r o p r i a t e l y  " m u l t i d i s c i p l i n a r y  c o m p u t a t i o n a l  
aerosciences" (MCAS) in the aerospace field is to simulate the actual flow field 
about  a compute r  op t imized ,  rea l i s t i c  ae rospace  veh ic le  at true f l igh t  
condit ions in a reasonable amount of time on the computer.  Phenomena such 
as shock and expansion waves, vortices,  shear layers,  separation, reat tachment 
and unsteadiness are part of  the actual flow field that must be predicted.  A 
real is t ic  conf igurat ion consists  of  a structure that is geometr ica l ly  accurate,  
f lexes under  aerodynamic  loads,  has def lect ing control  surfaces that perturb 
the flow field, possesses propulsion systems that interact with the airframe and 
r ad i a t e s  acous t i c ,  e l e c t r o m a g n e t i c  and in f ra red  s igna tu res .  True f l igh t  
condit ions consist  of  the actual speed, attitude and altitude, all of  which can 
yary with time. A reasonable amount of  time on the computer depends on the 
need for the data. Use for design studies requires a quick turn-around time, 
probably  on the order of  one hour. Use for design val idat ion,  that might  
supplement  or compl iment  an exper iment  or f l ight  test, would not require  
such a short time. 

The simulat ion of  an actual aircraft  is truly mul t id isc ipl inary  in nature and 
offers  numerous  chal lenges  to the CFD scientist .  The d imens ions  of  the 
computat ional  chal lenge are depicted graphical ly  in Figure 1. 

To that end, NASA is current ly  involved in a nat ional  research program 
entit led High-Performance Computing and Communicat ion (HPCCP). One part 
of  the NASA element involves the solution of computat ional  aeroscience grand 
cha l lenge  prob lems ,  that  is, mul t ip le  d i sc ip l ina ry  p rob lems ,  on mass ive ly  
paral le l  computers .  The pr imary object ive  of the computat ional  aeroscience 
applications portion of HPCCP is to develop robust computational  methods and 
the associated pi lot  applicat ion computer  programs that will  enable integrated 
m u l t i d i s c i p l i n a r y  analys is  and des ign of  advanced ae rospace  sys tems on 
mass ive ly  para l le l  computers .  
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One goal of the program is to make available computational power 1000 times 
greater than that existing today to solve the computational grand challenge 
problems. Research for this element of the program is focusing on the 
development  of  algorithms for multidisciplinary equation set coupling, 
a l g o r i t h m / a r c h i t e c t u r e  mapp ing  of the m u l t i d i s c i p l i n a r y  mode l s ,  
multidisciplinary optimization techniques, artificial intelligence procedures 
for multidisciplinary simulation and analysis, and application of these 
technologies to airframes, propulsion systems, and vehicle systems. 

Challenges offered the CFD scientist include coupling the equations governing 
the necessary disciplines, developing the appropriate algorithms to solve that 
all inclusive set of equations and efficiently programming those procedures on 
the computer. Solution of such a set of equations is estimated to require a 
teraFLOPS (1012 ) computer and between 10 and i00 hours per solution. 
Examples of MCAS are discussed in the next section. 

M u l t i d i s c i p l i n a r y  E x a m p l e  

An example is discussed below that demonstrates the MCAS program being 
pursued at the NASA Ames Research Center. Other examples being pursued at 
Ames include high-speed civil transport configurations and hypersonic 
vehicles. These problems were selected because of the following reasons: 1) 
development of technology for the numerical simulation of these vehicles will 
help the U.S. aerospace industry, 2) their simulation involves strongly-coupled 
multidisciplinary phenomena, and 3) their solution, it is believed, is tractable 
for advanced parallel computers. In the example discussed below, the plans for 
the project under NASA's HPCCP are first discussed followed by the current 
status and latest results of the project. 

High-Performance A i r c r a f t  

Multidisciplinary numerical simulations about high-performance aircraft are 
planned under HPCCP that include the disciplines of aerodynamics, engine 
stability, and aircraft controls. 1 These disciplines will be integrated for two 
different but related problems; a powered lift aircraft undergoing a transition 
maneuver from hover to forward flight and a multi-role fighter undergoing a 
low-speed, high-g turn. Both of these simulations involve unsteady maneuvers 
and as such will require advanced computational resources, i.e., massively 
parallel computers. The propulsion challenges involved in this element are 
concentrated on simulating the behavior  of the engine operating with 
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distorted flow at its inlet. In addition to these computations, others are planned 
involving hover in ground effect and transonic cruise. A classical 
aerodynamic control system with a jet-implemented reaction control system 
will be employed for the powered-lift transition simulation while a classical 
aerodynamic control system with advanced forebody devices and thrust vector 
control system will be used for the multi-role fighter simulation. Following 
validation, it is expected that a necessary and accurate design and analysis tool 
for powered-lift aircraft will result. 

Progress to date on this problem has yielded a capability to model the flow field 
surrounding the YAV-8B Harrier in low-velocity, jet-borne flight. 2 Ground 
effect flow fields about powered-lift aircraft, such as the Harrier, are highly 
complex. Because of scaling effects, testing of these types of flows in small 
wind tunnels does not always produce an accurate representation of what 
would happen in flight. Thus, full-scaled powered 'wind tunnel tests are 
required to quantify the ground effects on vehicle performance. Numerical 
simulation offers an accurate cost effective technique for predicting the 
performance of powered-lift aircraft near the ground. Incorporated in the 
simulation is an engine component deck which models the response of an 
engine, given the throttle position and inlet temperature and pressure; it 
returns values for the mass flow and nozzle exit temperature. 

Elements Pacing MCAS 
Requirements for performing such simulations include multidisciplinary 
application software, systems software and computers powerful enough to run 
that software. The successful development of all three of these technologies is 
mandatory for a positive outcome of MCAS. There are a number of elements for 
MCAS that are pacing the progress of multidisciplinary problems. They include 
physical modeling (e.g., turbulence and transition modeling, chemistry 
modeling, other physics such as electromagnetics and structures), solution 
methodology (e.g., equation set coupling and algorithms), computer power, and 
multidisciplinary validation data. Secondary pacing technologies include pre- 
and post-data processing (e.g., surface, internal and structural definition, grid 
generation and scientific visualization). The primary pacing elements are 
discussed below in more detail. 

Solution Methodology 

With the potential for enhanced computer power offered by machines with 
parallel architectures, will come a search for algorithms that run effectively 
on those machines. Not only will existing algorithms have to be programmed 
and evaluated, but also "old" algorithms will have to be revisited and tried to 
determine their effectiveness. In addition, the development of new algorithms 
specifically designed to take advantage of these architectures will have to be 
researched. These new algorithms should be those that can efficiently solve 
such equation sets as those governing gas-dynamics, structural dynamics, 
controls and optimization as well as some combination of those equation sets. 

Problems governed by multiple equation sets o f  different physical disciplines 
will require research as to the most optimum procedure for couping those 
equation sets. Both indirect and direct procedures will have to be investigated. 
The indirect approach links the physical dependence of one discipline on 
another by sensitivity matrices. 

The direct approach mathematically links the governing equation sets. They 
can be linked in either a strong or weak form. For example, hypersonic 
problems involve the solution of both the gas dynamic and finite-rate 
chemistry equations. In the strongly coupled approach, the two equation sets 
are solved simultaneously by a large matrix inversion process for an implicit 
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method. In the weakly coupled approach, each equation set is solved 
independently at each iteration, and the information from each equation set is 
then used to update the other equation set for the next iteration. The strongly 
coupled approach takes considerably more computer time than the weakly 
coupled approach. For hypersonic problems the weakly coupled approach has 
proved successful. 

Physical Modeling 

The development of suitable turbulence models for the RANS equations to date 
remains highly problem dependent. They are dependent on such elements of 
the problem as the free-stream conditions (for example, Mach and Reynolds 
number), configuration geometry (for example, deflected control surfaces and 
wing-body junctures) and flow field behavior (for example, shock boundary 
layer interaction). Accurate and numerically efficient turbulence models for 
numerical simulations, especially those types of models that can be used to 
obtain engineering answers for separated flow problems, must be developed. 

One multidisciplinary area of application requiring advanced turbulence 
models is associated with combustion. In this area, turbulence and chemistry 
models must be developed to appropriately account for chemistry/turbulence 
interactions. Transition models, that predict the flow characteristics leading 
up to fully developed turbulent flows are also important, especially for laminar 
flow control (LFC) applications, e.g., those associated with the high-speed civil 
transport, and high-speed, high-altitude flows, e.g., those associated with the 
National Aero-Space Plane (NASP). 

To improve the turbulence-model development process, it should be considered 
at the early stage of code development according to Marvin 3. The first step in 
such a process is to identify those flows pacing the development of the 
aerodynamic computations. The second step is to develop models through a 
phased approach of building-block studies that combine theory, experiment 
and computations. The final step is to provide verification and/or limits of the 
modeling through benchmark experiments over a practical range of Reynolds 
and Mach numbers. 

Turbulence models that complete the above process must then be installed in 
the application software. This requires close collaboration between the model 
developer and software author. Issues associated with overall code stability 
must be addressed 

C o m p u t e r  Techno logy  

Conventional serial computer architectures will probably not be capable of 
fulfilling the requirement of multidisciplinary computational aeroscience 
challenges in a reasonable amount of time. For that matter, some single 
discipline problems, such as direct simulation of turbulence, will also demand 
computer power beyond that offered by serial machines. Those machines are 
limited by the speed of light. To alleviate that problem, computers based on 
parallel architectures are being developed. Massively parallel computer 
architectures offer another avenue for improvement in computing speed. To 
obtain a numerical simulation on such a computer, the problem is divided 
among hundreds or even thousands of processors. It is important that the 
work be balanced across the processors and the communication between 
processors is minimized. By doing this, the time to compute a solution is 
dramatically reduced. 
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The goal for the CAS element within the HPCCP is a sustained execution speed of  
one teraFLOPS. This will require a peak speed of  more than one teraFLOPS or 
approximately 10 teraFLOPS. The CAS performance goal was designed to push 
the current state of  computing [echnology. The HPCCP, it is hoped, will lead to 
the commerc ia l  deve lopment  of  ful ly  scaled systems comple te  with system 
s o f t w a r e .  

Pa ra l l e l  compu te r s  cu r ren t ly  ava i l ab l e  at NASA Ames  for pe r fo rming  
ca lcu la t ions  inc lude  the Connect ion  Machine  (CM-2) with its 32,768, 7 
megahertz  (Mhz) processors  and the Intel iPSC/860 Gamma with 128 nodes 
based on 40 Mhz i860 superscalar RISC chips. The CM-2 has 128 kilobytes (KB) 
of memory per processor for a total of 4 gigabytes (GB) while the Intel has 8 
MB of  memory per processor for a total of 1GB. Scientists at Ames also have 
available to them the Intel iPSC/860 Delta machine at the California Institute of 
Technology which has 528 processors.  

These machines are current ly being used by Ames scientis ts  to solve such 
problems as 1) chimera grid generation for ARC3D on the CM-2, 2) implici t  
a lgor i thm eff ic iency on the Gamma, 3) three-d imensional  unstructured grids 
on the Gamma, 4) turbulent  channel flow on the Gamma, 5) compress ib le  
homogeneous  turbulence on the Gamma, 6) del ta  wing and h igh-performance  
aircraft  wing on both the CM-2 and Gamma, 7) strake-wing configurat ion for 
aeroelastic studies on the Gamma, 8) high-speed civil transport  on the Gamma, 
and 9) hypersonic blunt body with chemistry using the Monte Carlo approach 
on the Gamma. One problem at Ames that has been quite successfully solved 
on a parallel  machine from an eff iciency point  of  view is a very large-scale  
t u rbu l en t - f l ow  s imula t ion .  

Turbulent  flow numerical  s imulat ions require  ext remely  large data bases and 
long run times. To solve problems such as these on the Intel machines, Wray 4 
first had to implement Vectoral (a highly optimized compiler) ,  a very efficient 
FFT and an e f f i c ien t  in te r -p rocessor  communica t ion  scheme.  Once this 
software was written, then the applications software could be easi ly ported to 
the machines .  

The f i r s t  code  por ted  s imula tes  h o m o g e n e o u s  tu rbu lence  in a three-  
dimensional box. For this code on the 128 processor Intel Gamma, it runs more 
than 11 times faster than on a single Cray Y-MP processor. However, that is 
about 25% its theoretical speed. If  it were not for l imitations imposed by the 
speed o f  memory  accesses and of  in te rprocessor  communica t ion ,  the code 
would run at 80% of  the absolute upper bound of performance (80 MFLOPS per 
processor  in s ingle  precision) .  The performance on the Delta,  using 512 
processors, is about 30 times a Y-MP processor. 

The resul ts  of  these ca lcula t ions  indicate  that h ighly  para l le l ,  d i s t r ibu ted  
memory  compute rs  are well  su i ted  to l a rge - sca le  tu rbulence  s imula t ions ,  
memory speed degrades the i860 processor performance,  memory sizes for the 
speed avai lable  are inadequate,  and the in terprocessor  communicat ion  speeds 
are out of  balance with the processor speeds. 

M u l t i d i s e i p l i n a r y  V a l i d a t i o n  

Validat ion of  mult idiscipl inary application software will be a key pacing item. 
It takes a long time for design engineers to gain confidence in appl icat ions 
software. That conf idence is in part  gained by comparison with experimental  
or fl ight test data. It will  be important to conceive and perform, in paral lel  
with the appl ica t ion  software development ,  companion exper iments  des igned 
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to validate the multidisciplinary computer programs being created. It is also 
important that these experiments be designed in concert with the MCAS 
scientists but at an early stage so that the data produced can impact the 
software development program in a timely fashion. In the past such attempts 
resulted in a missed opportunity because the experiments required such a long 
time to produce the validation data. 

A new aeroelastic experiment is being planned at NASA Ames to validate 
software being developed there. In it, the unsteady aerodynamic and 
structural responses of a flexible delta-wing configuration representative of a 
high-speed civil transport wing will be studied. Simple semi-span models will 
be tested in the High-Reynolds Channel-2. Unsteady pressures will be 
measured using a new technology called pressure-sensitive luminescent 
coatings. This reduces the cost of the model. The data produced from this 
experiment will be used to validate the ENSAERO program developed by 
Guruswamy. 5 That program couples the Euler or Navier-Stokes equations with 
the structural equations of motion to predict the aeroelastic response of simple 
wings and wing-body configurations. 

C o n c l u s i o n s  

Solution of  the multidisciplinary computational aerosciences problemg 
described above will go a long ways towards helping the aerospace industry 
fulfill its basic two objectives, that is, (1) to reduce the development cost and 
(2) to increase the performance, safety and environmental compatibility of 
aerospace vehicles and their components. The tasks are challenging but the 
CFD scientific community is poised to meet that challenge. Accomplishment of 
those lofty goals will require computers orders of magnitude larger and faster 
than those currently available. It will also require systems software that 
permits easy use of those computers. Massively parallel computers offer a 
means to meeting the multidisciplinary computational aeroscience objectives. 
The High- Performance Computing and Communications Program designed by 
NASA provides a framework and the resources necessary for systematically 
developing the requisite elements needed to successfully accomplish 
multidisciplinary simulations. 
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I. In troduct ion  

Unsteady calculations of incompressible flows are especially time consuming 
due to the elliptic nature of the governing equations. Therefore, it is particularly 
desirable to develop computationally efficient methods. In the present paper, a brief 
description of the unsteady methods recently developed by the present authors is 
given followed by a discussion on some computed results. Since our main interest 
is in 3-D applications, methods presented here are limited to the primitive variable 
formulation, which is considered to be the most flexible for complex 3-D geometries. 

II. Solut ion M e t h o d s  

The incompressible Navier-Stokes equations for 3-D flows can be written in 
curvilinear coordinates, (~, r/, ( ) ,  as 

0 
= - - 4 1 )  ( 2 . 1 )  

v .  = 0 ( 2 . 2 )  

Here, t is the time, ~i = (, ~/or ( for i = 1, 2,or 3, ~ the velocity vector normalized 
by the Jacobian of the transformation, ei the convective flux vectors and evi the flux 
vectors for the viscous terms. All variables are nondimensionalized by a reference 
velocity and length scale. In this formulation, satisfying the mass conservation 
equation in each time step is the primary issue for obtaining time accuracy. Two 
methods are discussed below. 

Pseudocompressibility (PC) Method: 

The first unsteady method was developed using pseudocompressibility ap- 
proach [1]. In this approach the time derivatives in the momentum equations are 
differenced first. To solve the resulting difference equations for a divergence free 
velocity at the n+I time level, a pseudotime level is introduced and is denoted by a 
superscript m. The equations are iteratively solved such that fin+l,m+l approaches 
the new velocity fin+l as the divergence of fin+l,m+l approaches zero. To drive the 
divergence of this velocity to zero, the following pseudocompressibility relation is 
introduced: 

pn+l,mq-1 __ pn-t-l,m 
AT = --/~V" ?~n-}-l,m-bl (2.3) 

where 7- denotes pseudotime and/3 is a pseudocompressibility parameter. 

Since, in this formulation, the governing equations are changed into hyperbolic- 
parabolic type, the upwind differencing scheme derived from Roe [2] was used to 
discretize the convective flux terms. The viscous fluxes axe approximated using 
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central differences. Then the set of numerical equations is solved using an unfactored 
line relaxation scheme similar to that employed by MacCormack [3]. 

Fractional Step (FS) Method: 

The second method was developed using a fractional step approach [4]. The 
dependent variables are the pressure, defined at the center of the primary cells, and 
the volume fluxes defined on the faces of the primary cells. First the momentum 
equations are integrated for intermediate velocities. This first step velocity correc- 
tion is obtained by evaluating the pressure gradient term at time level n, thus the 
continuity is not satisfied at this intermediate level. 

In the second step, the velocity is updated such that the continuity equation 
is satisfied at the next time level. This is achieved by a Poisson type equation as 
below: 

where Rt(¢) represents discrete gradient-like terms of the modified pressure, ¢, 
and V, the volume of a computational cell. The right hand side, f ,  is a function 
of velocities at the previous and intermediate time level. Here, Div is a discrete 
form of divergence operator. Then, the variables at the new t ime level n -t- 1 are 
computed from the intermediate velocities and ¢. The most CPU-time consuming 
part of the FS method is the solution of a discrete Poisson-like equation. To achieve 
computational efficiency, multi-grid techniques have been employed for accelerating 
the convergence rate of the Poisson solver [5]. The total computational time required 
for solving the Poisson equation was reduced by an order of magnitude, while the 
overall computational time of the flow solver was reduced by a factor of 3-4. 

III. Computed  Results 

Computed examples using the flow solvers discussed above are presented next. 

Flow in a Constricted Channel 

The two methods discussed above achieve time-accuracy using different nu- 
merical algorithms. The PC method recovers the divergence free velocity field by 
iterating at the pseudo time level. During the subiteration in pseudo time, the 
pressure wave maps the entire flow field until the velocity field becomes divergence 
free. For fast convergence, the speed of the pressure wave has to be made large by 
using a large value of the pseudocompressibility parameter,/3. On the other hand, 
the FS method achieves time accuracy by solving for the pressure through a Poisson 
equation such that the flow field is divergence free at the next time level. 

To test the time accuracy and the iteration process, the flow in a constricted 
channel with time dependent inflow was computed and compared with the experi- 
mental measurements by Park [6]. In Figure 1, the geometry and the inflow velocity 
profile are given. In Figure 2, computed results from the two methods are compared. 
The results of the two methods compare well with the experimental data. In Fig- 
ure 3, pressure contours during an iteration process are compared. To illustrate 
the pressure wave propagation during subiteration in PC method, a small value 
of fl was chosen at this particular time step. A much larger value of/~ was used 
for actual calculations so that the incompressibility condition is satisfied within 10 
to 15 subiterations. The cost per iteration for PC method is higher than the FS 
method. However, since a large value of fl can be used, the total number of iter- 
ations required for the PC method is much smaller than the FS method making 
computational efficiency of the two methods competitive [7]. 

Artificial Heart Flow 

Artificial heart flow offers a wealth of CFD-related problems as well as phys- 
ical phenomena, involving moving boundaries and time-dependent flow. The flow 
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through the Penn State artificial heart is numerically simulated by using the time- 
accurate mode of the pseudocompressibility method [8]. As shown in Figure 4, the 
artificial heart model is composed of a cylindrical chamber with two tube exten- 
sions. The inflow (mitral) and outflow (aortic) tubes contain concave tilting disks 
which open and close to act as valves. The pumping action is provided by a pusher 
plate whose velocity is sinusoidal in time. To handle the geometric complexity and 
the moving-domain problem, a zonal method and an overlapped grid-embedding 
scheme is combined as shown in Figure 4. 

Computationally, the flow is started at rest, and four cycles of pusher plate 
motion were completed to obtain cyclic-flow solutions. During most of the cycle, 
10-20 subiterations at each physical time step were required. In Figure 5, unsteady 
particle traces are illustrated at a non-dimensional time of tiT = 0.45, where t and 
T denote the physical time and a period of the pusher plate motion, respectively. 
In light of the difficulties associated with measuring flow quantities in the region 
where a boundary is moving rapidly, the present unsteady flow capability will be a 
valuable alternative to obtain flow data in those areas. 

Turbopump Flow Simulation 

A crucial element for liquid rocket propulsion systems is the design of an effi- 
cient and reliable turbopump, which requires a good understanding of the complex 
internal fiow through the inducer. To develop and validate a computational proce- 
dure for turbomachinery applications, the flow through an inducer, which was de- 
veloped by Rocketdyne Division of Rockwell International Corporation, was studied 
[9]. The design flow is 2236 GPM with a design speed of 3600 RPM. The geometry 
is illustrated in Figure 6. In Figure 7, the planes are shown where experimental 
data were taken. The Reynolds number was 191,000 based on a reference length 
of 1 inch. The computation was performed using the time-accurate mode of the 
pseudocompressibility method to obtain steady solutions in a rotational frame of 
reference. In Figure 8, the computed relative total velocities on four different mea- 
suring planes are compared with experimental data. The computed surface pressure 
is shown in Figure 9. In the present study, an algebraic turbulence model was used. 
Considering the simplicity of the turbulence model, the results are quite satisfactory. 

IV. Concluding Remarks 

In the present paper, two unsteady methods for the incompressible Navier- 
Stokes equations are discussed. The main emphasis has been placed on achieving 
computational efficiency in three-dimensional applications. Implementation of an 
implicit upwinding scheme to the pseudocompressibility method and the multigrid 
acceleration scheme to the fractional step method are a part of such an effort. 
Overall, the two solution procedures produce comparable results. 
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Fig. 4. - Computat ional  model for the Penn 
State artif icial heart  

Fig. 5. - Computed  part icle traces at VT-0 .45  
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I N T R O D U C T I O N  

Time-marching density-based methods become stiff at low Mach numbers and 
low Reynolds numbers because of the disparate time scales in these flowflelds. 
Precondit ioning the time-derivative to alter the acoustic speeds is an effective 
method of controlling these disparities [1]. At low Maeh numbers, the acoustic 
time scales are altered to be of the same order as the fluid convective time scale, 
while at low Reynolds numbers, the acoustic time scales are made the same order 
as the viscous t ime scale. Thereby, convergence rates that  are independent of Math  
number  and Reynolds numbers may be obtained. 

A problem closely related to solving viscous flows is the stiffness induced by 
grid refinement and grid stretching. In localized regions of the flowfield, such as the 
near-wall region in high Reynolds number flows, very strong grid stretching is often 
used. Such regions typically cause slowdown in convergence because of reduced 
propagation speeds of disturbances. In this paper, we describe a new time-step 
definition that  enables virtually grid-independent convergence. 

We also describe an extension of the preconditioning procedure to include 
chemical species transport .  Clearly, the approach may be generalized to include 
other  sets of t ransport  equations as well. We apply the preconditioned method to 
a variety of reacting and non-reacting flows to demonstrate  its capability. These 
problems include fluid dynamics in a combustor and nozzle, flow over a backward 
facing step aaad mixing and combustion in a shear co-axial injector. 

T H E O R E T I C A L  D E V E L O P M E N T  

We start  with the non-conservative governing equations, with Q = 
(p, u, v, s, y~)T as the set of primary dependent variables. For the time-derivative 
term, this vector Q is transformed in terms of an alternate set of dependent variables, 
Q.  = (P, u, v, T, Yi) T. The resulting equation equation is written as: 

0C2 0Q~, ~ 0~) .~ 0~) = I-I + L( Q~, ) (1) 

The matr ix  multiplying the time derivative is replaced by a new preconditioning 
matr ix  (F~). These matrices are given as: 

o o °o o o 
- 0 0 PCoP p(hi hN) 1 - o o o - ) o o h . )  0 0 0 p 
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Note that the new matrix is derived by replacing the coefficient of the pressure 
time-derivative term. Here, /3 = kTRT (where 7 = Cp/C,) and Mr is a reference 
Mach number. This replaces the acoustic speeds of the system with pseudo-acoustic 
speeds that are of the same order as the fluid velocity. The resealing of the pressure 
derivative renders the preconditioned system 'pressure-based' at low Mach numbers. 
Pressure-based methods [2], developed originally for incompressible flows, resemble 
the preconditioning method in philosophy. These methods solve a separate equation 
for the pressure instead of the continuity equation. In this manner, the propagation 
of acoustic waves are treated independent of the other characteristics of the sytem. 

In addition, some of the off-diagonal terms are also dropped in deriving. F.. 
These terms do not alter the eigenvalues of the system, which remain the same as for 
the non-reacting equations [1] and, hence, retain the same convergence properties. 
However, dropping the p(hi-hN) term, gives the same eigenvalues but an incomplete 
set of eigenveetors. Therefore, care should be taken in selecting the preconditioning 
matrix. 

Preconditioning to maintain well-conditioned eigenvalues is appropriate when 
viscous effects are negligible because the system is hyperbolic. On the other hand, 
when viscous and diffusion effects become dominant, the system becomes parabolic 
and convergence is controlled by the viscous time step. However, the propagation 
of acoustic waves remains hyperbolic to first order. Therefore, at low Reynolds 
numbers, the preconditioning matrix is used to optimize both the acoustic time 
scale and the viscous time step. This is done by scaling the parameter k in the 
definition of fl and is similar to that outlined in Ref. 1. 

The final step in deriving the preconditioning matrix is to transform the 
equation to conservative form. This is achieved by premultiplying the equation 
by the Jacobian 0Q o-~' where Q is the standard conservative flux vector. The final 
form of the preconditioned system is given by 

OQ,, OE OF 
£ --~- + -~z + -~y : H + L ( Q ~ ) (2) 

Equation (2) is solved by an Euler Implicit algorithm using Douglas-Gunn 
approximate factorization. Traditionally, the time-step size is selected by using a 
fixed CFL (around 5 to 10) and the maximum eigenvalue at each location. For high 
aspect ratio grid cells, this results in reduced wave propagation speeds, resulting 
in poor convergence rates. Stability analysis reveals that the optimum CFL for 
high aspect grids can be much higher than for regular grids. Accordingly, we use 
the following empirical relationship to vary the local CFL based on the grid aspect 
ratio (AR): 

CFL~Ax CFLvAy) 
At = Min ( As ' I v (3) 

where 

CFL~ = CFL, CELv = CFL (AR) i--~ 

This definition appears to give nearly grid-independent convergence in the 
presence of strong wall stretching. A similar expression has been used for grid- 
stretching in the axial direction and has been found to give similar convergence 
behaviour. 

R E S U L T S  

The grid geometry used for the combustor/nozzle computations is shown in Fig. 
l(a). The grid size is 200 X 50 with wall stretching to resolve the boundary layer 

454 



(_Re = 1 x 105). Convergence from three different runs is shown in Fig. l(b). Curve I 
shows convergence without preconditioning. The poor convergence is due to the low 
Math numbers encountered in the combustor section. Curve II shows convergence 
with preconditioning and time-step based on maximum eigenvalue (CFL = 4). 
Though, this is an improvement over the previous case, convergence is still quite 
poor. The aspect ratio of the cells in the near wall regions is about 100 and this is 
most likely the reason for the poor convergence. Curve III shows the convergence 
with preconditioning and the new time-step definition based on Eqn. (3). Much 
better performance is obtained with the residuals going down about ten orders of 
magnitude in 2000 steps. Figure 1(c) shows the converged Maeh number contours 
for this case. 

Figure 2(a) shows the convergence with preconditioning for flow over a 
backward facing step. The length and width of the domain are 10 and 1 em 
respectively and the step height is 0.5 em. A uniform grid of size 101 X 61 is 
used giving an aspect ratio of 6. Convergence is shown for both time definitions. 
Once again, the new definition shows a significant improvement in convergence 
for this problem. Figure 2(b) shows the converged velocity contours for four 
Reynolds number conditions and Fig. 2(c) compares the predicted recireulation 
lengths to experimental data [3]. Very good agreement is evident except for a slight 
discrepancy at Re = 400, at which Re number, the experiments start to show three- 
dimensionality. 

Figure 3(a) shows the grid used for the shear co-axial injector. Oxygen gas 
flows in the core while hydrogen flows in the surrounding annular passage. This 
flowfield is complex, involving mixing, reeirculation and combustion. For these 
initial studies, a simplified chemistry model is used and only laminar Reynolds 
numbers are considered. Figure 3(b) shows convergence without and with reactions. 
At the higher Reynolds number (Re = 2000), excellent convergence is obtained for 
both cases. However, at the lower Re, convergence with reactions deteriorates. This 
is because the stronger combustion source terms at the lower flow speed require a 
reduction in the time-step size. The effect of source terms is an important factor, 
especially for preconditioned schemes because they typically operate at larger time 
step sizes than conventional methods. Future work will be targetted on such source 
terms and how they may be better tackled. 
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NUMERICAL INVESTIGATION OF A DOUBLE-PERIODIC 

COMPRESSIBLE MULTI-VORTEX-FIELD 

M i i l l e r , K . J . ,  R o e s n e r , K . G .  

I n s t l t u t  fiir Mechanik,  Technische  H o c h s c h u l e  D a r m s t a d t  

H o c h s c h u l s t r . 1 ,  6100 D a r m s t a d t ,  G e r m a n y  

In  t h i s  n u m e r i c a l  s t u d y  s t a b l e ,  l a m i n a r  s o l u t i o n s  a n d  t h e  t r a n s i t i o n  t o  

u n s t e a d y ,  u n s t a b l e  s i t u a t i o n s  f o r  a t h r e e - d i m e n s i o n a l  d o u b l e -  o r  t r i -  

p l e - p e r i o d i c  V o r t e x - f i e l d  a r e  c a l c u l a t e d .  T h e s e  v o r t i c e s  a r e  p r o p o s e d  

f o r  a p p l i c a t i o n  t o  g a s - g a s - s e p a r a t i o n  l i k e  c e n t r i f u g e s .  T h e  p a r a m e t e r s  

a n d  m e c h a n i s m s  o f  f l o w - f i e l d - i n s t a b i l i t y  a r e  i n v e s t i g a t e d  f o r  a v i s -  

c o u s  g a s .  

P r o b l e m s :  

T h e  v o r t i c e s  a r e  i n d u c e d  by  c o r o t a t i n g  d i s k s  on  t o p  a n d  b o t t o m  o f  a 

i n f i n i t e l y  e x t e n d e d  b o x .  T h e  d i s t r i b u t i o n  o f  t h e  d i s k s  in  t h e  i n f i n i t e  

x - y - p l a n e  is s h o w n  in f i g u r e  1. T h e  h e i g h t  o f  t h e  b o x  is c h o s e n  e q u a l  

t o  t h e  w i d t h  a n d  t h e  d i a m e t e r  o f  t h e  r o t a t i n g  d i s k s  o f  an  e l e m e n t a r y  

v o r t e x  c e l l .  G e o m e t r i c a l  p a r a m e t e r s  a r e  o f  no  i n t e r e s t  in t h i s  i n v e s t i -  

g a t i o n .  B e c a u s e  o f  t h e  p e r i o d i c i t y  o n l y  o n e  c e l l  h a s  t o  be  c o n s i d e r e d .  

T h e  b o u n d a r y  c o n d i t i o n s  a r e  g i v e n  b y  s y m m e t r y  t o  t h e  s u r r o u n d i n g  

c e l l s .  O n  t o p  a n d  b o t t o m  n o - s l i p  c o n d i t i o n s  a r e  a s s u m e d  on  t h e  r o t a -  

t i n g  d i s k s .  T h e  o u t e r  p a r t  o f  t o p  a n d  b o t t o m  s h o w s  in t h e  f i r s t  c a s e  

t a n g e n t i a l  f l o w  d u e  t o  a a s s u m e d  p e r i o d i c  c o n t i n u a t i o n  in z - d i r e c t i o n .  

O t h e r w i s e  a w a l l  p a r t  a t  r e s t  i s  a s s u m e d .  No t u r b u l e n c e  m o d e l  is  

u s e d .  In  t h e  f i r s t  c a s e  a s p i n - u p  w a s  c a l c u l a t e d .  F o r  t h e  s e c o n d  p r o -  

b l e m  t h e  i n i t i a l  f l o w  f i e l d  is  g i v e n  by  an  i n t e r p o l a t i o n  f r o m  t h e  k n o w n  

d i s t r i b u t i o n  on  t h e  w a l l s  a n d  a T a y l o r - G r e e n - f l o w  [ 1 ] , [ S ]  in t h e  m i d d l e  

p a r t  o f  t h e  e l e m e n t a r y  c e l l .  
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N u m e r i c a l  a p p r o a c h :  

In o r d e r  to  s o l v e  t h e  t i m e  d e p e n d e n t  N a v i e r - S t o k e s - e q u a t i o n s  a C h e -  

b y s h e v - C o l l o c a t i o n - M e t h o d  [2]  w i t h  R a l s t o n - i n t e g r a t i o n  [3]  o f  f o u r t h  

o r d e r  in t i m e  is u s e d .  The c o l l o c a t i o n  p o i n t s  a re  G a u B - L o b a t t o - p o i n t s  

wh ich  f i t s  ve ry  we l l  to  t h e  e s t i m a t e d  and  c a l c u l a t e d  f l o w  p r o p e r t i e s .  

Due to  t h e  e x p l i c i t  t i m e  d i s c r e t i z a t i o n  a f a s t  3D C h e b y s h e v - t r a n s f o r -  

m a t i o n  was  n e e d e d .  The u s u a l  r e d u c t i o n  t o  a 3D FFT n e e d s  a l o t  o f  

p r e -  and  p o s t p r o c e s s i n g  and l i m i t s  t h e  o r d e r  of  d i s c r e t i z a t i o n .  F u r -  

t h e r m o r e  i t  is ve ry  d i f f i c u l t  to  u se  s y m m e t r i e s  o f  t he  s o l u t i o n  w i t h  

r e a d i l y  i m p l e m e n t e d  FFT ' s .  T h e r e f o r e  a d i r e c t  t r a n s f o r m a t ,  ion b a s i n g  

on the  p r i n c i p l e s  o f  t h e  FFT was  d e v e l o p e d  and  a very  i m p o r t a n t  p a r t  

o f  t h i s  i s s u e  was  the  a d a p t a t i o n  to  t h e  v e c t o r - c o m p u t e r  a r c h i t e c t u r e .  

A l i a s i n g  e r r o r s  a re  r e d u c e d  by a p a d d i n g  t e c h n i q u e  and t h e  v i s c o u s  

t e r m s  are  f r o z e n  d u r i n g  t h e  f o u r  s t a g e s .  As t h e  b o u n d a r y  and i n i t i a l  

c o n d i t i o n s  have  s e v e r a l  i n t e r n a l  s y m m e t r y  p r o p e r t i e s  t he  n u m b e r  o f  

u s e d  g r id  p o i n t s  and  C h e b y s h e v - c o e f f i c i e n t s  can  be r e d u c e d  t o  1/4 o f  

t h e  c o m p l e t e  cube .  

The c a l c u l a t i o n s  w e r e  m a d e  fo r  a i r  and  a R e - N u m b e r  r a n g e  f r o m  1600 

t o  8"10 s. The s o l u t i o n  was  a c h i e v e d  on g r i d s  o f  413 p o i n t s  t o  g r i d s  

w i t h  1213 p o i n t s  for  m a x i m u m  a c c u r a c y .  

A 2D T a y l o r - G r e e n - v o r t e x  was u s e d  to  c h e c k  the  code  and to  g e t  an 

e s t i m a t i o n  f o r  t h e  n u m e r i c a l  d i s s i p a t i o n  o f  t h e  s c h e m e .  

\ / \  J .  

\ / \  f \  J 

Fig.  1: D i s t r i b u t i o n  o f  r o t a t i n g  d i s k s  in t he  i n f i n i t e  x - y - p l a n e  
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R e s u l t s :  

In the  f i r s t  case  top  and b o t t o m  of  the  ce l l s  have i m p e r m e a b l e  wa l l s  

which  a l l ow  slip.  The s o l u t i o n  is a s s u m e d  to  be per iod ic  in z - d i r e c t i o n  

too .  I t  was  p o s s i b l e  to  f ind l amina r  s o l u t i o n s  in a smal l  r eg ion  of  the  

R e - M a - p l a n e .  F igure  2 s h o w s  for  Re=1600 and Ma=0.5 the  s t a t i o n a r y  

f l o w  f ie ld  in the  middle  p lane  z=0. In gene ra l  i t ' s  a kind of  E k m a n - l a -  

yer  f l o w  wi th  suck ing  disks .  The ve r t i c a l  m o t i o n  is c o n c e n t r a t e d  a long  

the  edges  o f  the  cube.  

!z 

litiii!!-iiii!iiiilli! 

- I ,0-0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 O,E 0,8 1~0 
X-RX[5 

Fig. 2: F low f ie ld  fo r  Re=1600, Ma=0.5 in the  p lane  z=O 

It  t u r n e d  ou t  t h a t  f o r  h ighe r  Re- and M a c h - n u m b e r s  the  f l o w f i e l d  be -  

c o m e s  u n s t a b l e  due to  T a y l o r - V o r t i c e s  e m a n a t i n g  f r o m  the  s t a g n a t i o n  

l ine reg ion .  The c i r c u m f e r e n t i a l  v e l o c i t y  p l o t t e d  over  the  d i a g o n a l  

s h o w s  s imi l a r i t y  to  a u n s t a b l e  T a y l o r - C o u e t t e -  or  G 6 r t l e r - f l o w .  A 

k ind  o f  c r i t i c a l  ' T a y l o r - n u m b e r ' - v a l u e  has been  de t ec t ed .  This c r i t i ca l  

' T a y l o r - n u m b e r '  can be e x p r e s s e d  as the  p r o d u c t  o f  M a c h - n u m b e r  and 

the  s q u a r e - r o o t  o f  the  R e y n o l d s - n u m b e r .  S t a b i l i t y  c o r r e s p o n d s  to  a 

' T a y l o r - n u m b e r '  l ess  t han  19. W h e n  th is  p a r a m e t e r  r eachs  a va lue  o f  

38 the  the  v o r t i c e s  i n c r e a s e s  in s t r e n g t h  and  f r equency .  They  d e s t a b i -  

lize the  E k m a n - L a y e r  o f  the  r o t a t i n g  disks. F ina l ly  the  f low s e p e r a t e s  

f r o m  the  d isks  and t u r n s  in to  t u r b u l e n c e .  The  numer ica l  r e s u l t s  in the  

t h r e e  d i f f e r e n t  s t a b i l i t y - r e g i o n s  are m a r k e d  wi th  squa re s ,  c i r c l e s  and 

t r i a n g l e s  in f i gu re  3. 
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S t a b i l i t y - r e g i o n s  in the  R e - M a - p l a n e  Fig. 3: 

In the  s e c o n d  case  top  and b o t t o m  o f  the  c e l l s  are s o l i d  w a l l s  w i t h  

n o - s l i p  c o n d i t i o n s .  It turns  out  out  that  the  boundary  layer  above  is 

u n c o n d i t i o n a l l y  u n s t a b l e  [4 ] .  The e x t e r n a l  f l o w  is d e c e l e r a t e d  t o w a r d s  

the  s t a g n a t i o n  l ine a long  the  edge .  The p r e s s u r e  increases  s i g n i f i c a n t -  

ly und the  boundary  layer  f o r m s  a s e p a r a t i o n  bubble .  The s e p a r a t i o n  

turns  in to  t u r b u l e n c e  for  E k m a n - n u m b e r s  l e s s  than 1.5E-3. Figure 4 

g ives  a cu t  t h r o u g h  the  r e c i r c u l a t i o n  z o n e .  

o 

~ a  

41 

- I , 0 - 0 s 8  -0,~ -0,4 -0,2 0,0 0 , 2  O,'i 0~6 0,8 1,0 

Y - ~ × ] 5  

Fig. 4 : F l o w - f i e l d  in the  s ide  p lane  s h o w i n g  s e p a r a t i o n  o f  the  b o -  

undary  layer  for  R e = 8 0 0 0 ,  Ma=0.25 
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C o n c l u s i o n s :  

A t h r e e - d i m e n s i o n a l  t i m e - d e p e n d e n t  C h e b y s h e v - C o l l o c a t i o n - s c h e m e  

was  d e v e l o p e d  and t e s t e d .  I t  was  a p p l i e d  to  a c o m p r e s s i b l e  d o u b l e -  or  

t r i p l e - p e r i o d i c  V o r t e x -  f ie ld .  

In t he  f i r s t  t r i p l e - p e r i o d i c  c a s e  w i t h o u t  b o u n d a r y - l a y e r s  t he  f l o w f i e l d  

s h o w s  a k ind  o f  T a y l o r - G S r t l e r - i n s t a b i l i t y .  The  s t a b l e  r e g i m e  o f  t he  

R e y n o l d s - M a c h - n u m b e r - p l a n e  was  d e t e r m i n e d .  For  h ighe r  R e y n o l d s -  or  

M a c h - n u m b e r s  s e c o n d a r y  v o r t i c e s  a l o n g  the  e d g e s  are s t o c h a s t i c a l l y  

g e n e r e r a t e d .  F u r t h e r  i n c r e a s i n g  o f  t he  t w o  p a r a m e t e r s  r e s u l t s  in de -  

s t a b i l i z e d  E k m a n - l a y e r s  and  a t u r b u l e n t  f l o w - f i e l d .  

In t he  s e c o n d  p r o b l e m  w i t h  s o l i d  wa l l s  a t  t o p  and  b o t t o m  o f  t he  v o r -  

t e x - c e l l s  t he  b o u n d a r y - l a y e r  a b o v e  p r e d o m i n a t e s  t he  f l o w f i e l d .  An un -  

s t e a d y  t h r e e - d i m e n s i o n a l  s e p a r a t i o n - b u b b l e  e v o l v e s  in f r o n t  o f  t he  

s t a g n a t i o n  l ines .  For  h i g h e r  R e y n o l d s -  or  vice v e r s a  s m a l l  E k m a n -  

n u m b e r s  t he  r e c i r c u l a t i o n  z o n e  b e c o m e s  t u r b u l e n t  and i n f l u e n c e s  t he  

c o m p l e t e  v o r t e x - c e l l .  

The  p r o p o s e d  t w o - d i m e n s i o n a l  a r r a y  o f  v o r t i c e s  has  no t e c h n i c a l  use  

f o r  g a s - g a s - s e p a r a t i o n  due  to  t he  p r e s c r i b e d  i n s t a b i l i t i e s .  The  s t a b l e  

R e y n o l d s -  and M a c h - N u m b e r s  are  o r d e r s  o f  m a g n i t u d e  s m a l l e r  t h a n  

t h e  c o r r e s p o n d i n g  v a l u e s  f o r  rea l  c e n t r i f u g e s .  
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A D I R E C T  IMPLICIT M E T H O D O L O G Y  FOR T H E  SIMULATION OF 
T H E  R A P I D  P I T C H - U P  OF A N  AIRFOIL W I T H  A N D  W I T H O U T  

L E A D I N G - E D G E  F L O W  CONTROL* 

G.A. Osswald, K.N.  Ghia and U. Ghia t 

Department of Aerospace Engineering and Engineering Mechanics 
tDepartment of Mechanical, Industrial, and Nuclear Engineering 

Computational Fluid Dynamics Research Laboratory 
University of Cincinnati, Cincinnati, Ohio 45221 USA 

During the last decade, a number of experimental and analytical/computational 
studies have examined the large-amplitude rapid pitching motion associated with high 
angle-of-attack maneuvers. Such motion typically leads to the generation of a dynamic 
stall vortex whose evolution results in large transient lift, drag and moment variation 
that can, for short periods of time, produce loadings significantly larger than those ex- 
pected during either steady, or quasi-steady flight. Recently, Osswald, K. Ghia and U. 
Ghia (1991) and K. Ghia, Yang, Osswald and U. Ghia (1991) have analyzed this flow 
using direct numerical simulation and a vorticity-stream function (w, ¢) formulation 
of the unsteady incompressible Navier-Stokes(NS) equations. In the present paper, 
this formulation is extended to include viscous circulation at infinity, F = :~oo ~d- dl, 
as an additional unknown resulting in the development of an (w, ~b, F) formulation of 
the 2-D unsteady NS equations. The inclusion of circulation as a primary unknown 
closes the problem associated with the creation of surface vorticity. By demonstrating 
that all involved matrices are non-singular and well-conditioned, the present implicit 
algorithm shows that only one distribution of surface vorticity and only one value 
of circulation will result in a continuous single-valued pressure distribution along the 
body surface, while remaining consistent with the NS equations for vorticity transport 
and stream function within the interior of the flow domain. 

The problem of a 2-D body, currently a NACA 0015 airfoil, subjected to an arbi- 
trary three-degree-of-freedom maneuver is sketched in Fig. 1. The present analysis is 
developed in terms of a generalized body-fixed non-inertial coordinate system (~1, ~) ,  
whose covariant base vectors ~1 and e2 are also sketched in Fig. 1. This coordinate 
generality is used to introduce the (461,129) body-fixed C-grid distribution whose 
near-airfoil region is shown in Fig. 2. Through analytical stretching transformations, 
the far-field boundary is placed at infinity, with semi- infinite cells occurring adjacent 
to this boundary in the physical plane. 

The (w, ¢, F) formulation of the 2-D unsteady incompressible NS equations in 
non-inertial body-fixed generalized coordinates is given as follows: 

Vorticity Transport Equation: 

£~zo, + V x (wI x VA) + ~ ( V  x V x ~ ± ) = 0  (1) 

Deviational Stream Function Equation: 
0 {~0¢D~ 0 ( m 0 _ ~  __V~WZ (2) 

*This research is supported,in part, by AFOSR grant No. F49620-92-J-0292 and 
Ohio Supercomputer Center grant No. PES080. 
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where the apparent velocity I)A is given as IgA = ~ -- I"B/I - fib x ~. Here, Vs/I and 
~B are, respectively, the translational and of angular velocities of the body, f is the 
relative position vector as shown in Fig. 1 and Vz is the inertial velocity obtained in 
terms of an inertial stream function ¢~ given as 

+,_- {=2 cos0(,)_ + sin0(,)} + ( ) + o,g + +o 

Here, CD is the deviational stream function governed by Eq. (2). The far-field 
boundary conditions are wz = 0 and CD = 0 at infinity. For a maneuvering airfoil 
with surface suction/injection flow control, the body-surface boundary conditions are 
f, rA = Tt  + Nil; S = ~ Nx/~-~d~ ~ ; 

~ ( ~ 1 ~ 2  CD : -- [z2(cos O(t) -- V?~/z(O ) - x~(sin O(t) - V ? ~ / g t ) )  + 2 ~ , - ,  + (P)~} 

and wI = ~7 × l)z subject to the constraints that  

(0o-~2 ) = -[o-~{x2(cosO(t)- Vll,(t)) } -o-~{z~(sinO(t)-  V~/ I ( ' ) )  } 

r o { ln(  ~ )} +.B~:<,) ~{(~,)2 + (x2). 3 + ~ 

and that  pressure is single-valued on the body surface so that ~(Vp) • dl : 0. For 
maneuvering bodies, 

p =  q-- ( E @ )  - -aB.~  + l"Bx'P 
2 ' 

vq  = - { ~  + (~, x ~ ) +  ( ~  x ~) + ~ ( v  x 

where aB and ~B are the translational and angular accelerations, respectively, of the 
body, and Re the Reynolds number. 

The nUmerical technique employed is that of direct implicit solution. The finite- 
difference discretization is second-order accurate in time and space, except for vor- 
ticity convection, which is fourth-order accurate in slow regions (1 VA l< 0.1) and 
third-order accurate in fast regions (I VA I< 0.1). The vorticity transport equation 
(1) is solved using a Douglas-Gunn type ADI scheme, while the elliptic stream func- 
tion equation (2) is solved using direct block-Gaussian elimination. The advanced 
levels of wall vorticity, circulation and interior stream function are determined simul- 
taneously, so as to guarantee pressure continuity along the body surface. The creation 
of surface vorticity is the critical driving mechanism associated, with the evolution of 
these incompressible viscous flows. The algorithm both vectorizes and parallelizes. It 
currently achieves -- 130 M flops per processor, with parallel speed-up of ---5 on an 
8-processor Cray Y-MP 8/864. 

Figure 3 presents a comparison of vorticity contours for the simulation of a single 
pitch-up event and the ensemble-averaged experimental data of Ramaprian (1992). 
The maneuver is a slow constant-rate pitch-up with a nondimensional pitch rate 
a+ = (c~)  = 0.072 and Re = 52,000. The initial condition chosen corresponds to a U¢¢ 
CL decreasing zero-lift state of the asymptotic shedding-wake solution at zero degree 
angle of attack. 

Figure 4 presents the effectiveness of leading-edge suction as a flow control mech- 
anism for a rapid pitch-up maneuver with a+ = 0.2 at Re = 45,000. Contours of 
vorticity are presented for both the controlled and uncontrolled cases for angles of 
attack a _~ 20°,26 ° and 30 °. For the uncontrolled case, the dynamic-stall vortex 
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forms at a _~ 18% Leading-edge suction over the first 15% of chord at a volumetric 
suction rate of S = -0.0074 was initiated at a = 17.2 °. Control authority through 
cr = 30 ° is dearly evident from Fig. 4. Figure 5 displays stream-function and vortic- 
i ty contours for the a + = 0.072, Re = 52,000 case corresponding to the experiment 
of Ramaprian (1992). At this slower pitch rate, a leading-edge disturbance is seen 
to reach the region of the dynamic-stall vortex and trigger its earlier formation at 
a ~_ 16 °. However, its subsequent growth appears to be a leading-edge driven phe- 
nomenon. In both cases, the video animation shows the dynamic stall vortex to be 
an amalgamation of strong, discretely shed vortices from the leading edge. 

In summary, an unsteady NS analysis is developed that permits arbitrary three- 
degree-of-freedom maneuvering of an arbitrarily shaped body. A generalized Schwarz- 
Christoffel transformation technique is used to place a clustered C-grid about a NACA 
0015 airfoil. Precise grid-point control is achieved through the use of analytical 1-D 
clustering transformations. Far-field boundaries are analytically mapped to infinity. 
Results are presented for Re = 45,000 and 52,000, both with and without flow control, 
and compared with experimental data. Also, video animation sequences detailing the 
vortex dynamics of the complete dynamic stall event, both with and without control, 
are available. 
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Introduction 
Over the past four years, we have incorporated substantial improvements into the approach 
which we had originally proposed 1 for the solution of 3D Euler flows past complete aircraft 
configurations using completely unstructured meshes. In this paper we outline our current 
capability in this area, which includes a multigrid procedure for the convergence 
acceleration of the basic flow solver. Numerical simulations of Euler flows past some 
realistic configurations are presented. 

Mesh Generat ion Approach 
The subdivision of a 3D computational domain, into an unstructured assembly of 
teterahedral elements, is achieved by means of the advancing front method 2. In this 
procedure, the domain boundary is first divided into an assembly of triangular facets, 
which forms the initial front for the 3D discretisation. With elements and points being 
simultaneously created, the front is continuously updated and the process is completed 
when the front is empty. The advancing front approach has been found to allow great 
flexibility in the generation of meshes which meet user-specified distributions of mesh size. 

Single Grid Flow Solution Algorithm 
Steady state solutions of the compressible Euler equations are obtained by advancing the 
transient form of the equations to steady state. The spatial discretisation is achieved via a 
standard Galerkin procedure, leading to a centered approximation of the flux derivatives. 
Stabilisation of the solution is achieved by the addition of artificial dissipation. The artificial 
dissipation, which is of matrix form 3, is designed to suppress hourglass modes in smooth 
regions of the flow and to produce sufficient damping to maintain the stability of the 
scheme in the presence of discontinuities 4,5. The resulting scheme can be shown to be 
formally second order accurate in space for smooth flows on general unstructured meshes. 
Time discretisation is accomplished via a multi-stage timestepping schemes and the stability 
range of the scheme is extended by the use of explicit residual smoothing. The memory and 
CPU requirements of this scheme are considerably reduced when the unstructured 
tetrahedral mesh is represented in terms of an edge based data structure. 

Multigrid Acceleration 
The convergence of the basic flow algorithm has been accelerated by the addition of an 
unstructured multigrid procedure 4,7. With the geometry of the computational domain 
defined, a sequence of totally unstructured grids, of increasing fineness, is automatically 
constructed by the advancing front method. The objective of the multigrid procedure is then 
to compute, on the coarser grids, corrections to the fine mesh solution. This requires the 
identification of suitable methods for the transfer of unknowns, corrections and residuals 
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Figure 1 
ONERA M6 wing; M~ = 0.84 and ct = 3.06 

degrees. Pressure contour distribution on the 
wing upper surface and on the symmetry plane. 
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Figure 2 
ONERA M6 Wing; M= = 0.84 and cc = 3,06 

degrees. Convergence history of the multigrid 
scheme using a sequence of six grids. 

between general tetrahedral meshes s. The algorithmic implementation which has been 
employed to date uses the single grid scheme outlined above on the finest mesh and a more 
economical first order scheme on the coarser meshes. The multigrid cycle starts on the 
finest mesh and one relaxation sweep is performed on each mesh before restriction to the 
next coarser mesh. The corrections computed on all the coarser grids are then simply added 
to the fine mesh solution. This procedure is such that the converged fine mesh solution is 
unaltered by the multigrid process. 

Numerica l  Example s  
Transonic Flow Over  an ONERA M6 Wing. The first example consists of the 
simulation of the flow over an ONERA M6 wing at a free stream Mach number, M~, of 
0.84 and at an angle of attack, ct, of 3.06 degrees. A sequence of six grids was employed, 
with the finest mesh consisting of approximately 200000 points. A five stage versio n of the 
timestepping scheme is employed on each grid. Figure 1 shows the distribution of the 
pressure contours on the upper surface of  the wing and the symmetry plane. The 
convergence history is shown in figure 2 and it may be observed that the residual is 
reduced by four orders of magnitude in only 100 multigrid cycles. 
Flow About  an Installed Aero-Engine Nacelle. The second example involves the 
simulation of the flow over a Rolls-Royce model of a twin engined civil transport with long 
cowl nacelle powerplants 9. The mass inflow to the engine was prescribed and the engine 
outlet conditions were determined under the assumption that the separate core and fan 
streams were completely mixed before exhausting through the nozzle. To investigate the 
effect of varying the free stream conditions, three different flow simulations have been 
computed. In Case (i), Moo = 0.77 and c~ = 2.743 degrees; in Case (ii), Moo = 0.801 and c~ 
= 2.738 degrees; in Case (iii), M~ = 0.84 and c~ = 2.739 degrees. For each flow 
condition, the same sequence of three meshes, consisting of 787568, 262664 and 172066 
elements, was used for the multigrid procedure. The corresponding surface discretisations 
are shown in figure 3. The computed pressure contour distributions on the surface, 
obtained after 300 multigrid cycles, for the three flow cases are also shown in this figure. A 
comparison between the convergence behaviour of the single grid and the multigrid 
schemes for this example is shown in figure 4. For Case (ii), a comparison between the 
results of experiment and of computation for typical wing and nacelle sections is shown in 
figure 5. The overprediction of the pressure on the upper surface of the wing is attributed to 
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Figure 3 
Flow about an installed aero-engine nacelle. Surface discretisations for the sequence of grids employed in the 

multigrid scheme (a) 172,066 tetrahedra (b) 262,664 tetrahedra (c) 787,568 tetrahedra. Computed surface pressure 
contour distribution after 300 multigrid cycles (d) Case (i), M_ = 0.77, tx = 2.743 degrees (e) Case (ii), M~ = 

0.801, a = 2.738 degrees (f) Case (iii), M~ = 0.84, a = 2.739 degrees. 
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the inviscid flow model which has been employed. On an IBM RS6000/530H workstation, 
the grid generation for this example required approximately seven cpu hours, while each of 
flow cases was completed in approximately eight cpu hours. The flow simulation required 
less than fifteen megawords of memory. 

Conclusions 
It has been demonstrated that the use of an inviscid flow solver and a fully unstructured 
mesh approach leads to an efficient computational technique for rapidly analysing the 
effects of design changes to aerodynamic configurations. Current efforts are aimed at 
providing an equivalent viscous capability. 
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This paper describes a Finite Element Method - Flux Corrected Transport (FEM-FCT) 
approach with an unstructured adaptive grid scheme to the simulation of two-phase flow. 
The gas equations are computed using an Eulerian frame of reference, while the particle 
transport is computed using both Eulerian and Lagrangian frames of reference. One- 
dimensional shock wave attenuation was investigated to evaluate the performance of these 
methodologies and the gas-solid interphase transport models. 

1. INTRODUCTION 

When solving the two-phase flow equations, the gas, as a continuum, is best 
represented by an Eulerian description, that is, the gas characteristics are calculated at fixed 
points within the flow. However, as the particles may be relatively sparse in the flowfleld, 
they can be modeled by either the Eulerian description (in the same manner as the gas flow) 
or Lagrangian description (where individual particles or particle groups are monitored and 
tracked in the flow). Crowe 1 presented a review of numerical models for two-phase flow. 
Both Eulerian and Lagrangian methods were discussed and compared. Eulerian methods 
allow particle diffusion to be incorporated into the model. Lagrangian methods require less 
memory overhead when particles of different sizes are considered and when particles 
rebound off of boundary surfaces. These two approaches were both employed in the 
present study to allow a direct comparison. 

Sommerfeld 2 performed an experiment to study the attenuation of a shock as it 
propagates into a gas-particle mixture. A vertical shock tube was used to provide a 
homogeneous gas-particle mixture. Air was used as the gas and glass spheres were used 
for the particles. The shocks were generated in pure air and propagated into the dusty flow. 
A number of different tests were run at different initial Mach numbers (M0) and particle 
mass fraction (11) values. Numerical experiments to examine the dusty shock attenuation 
were conducted in the same study using the random-choice method and by adding the 
particle phase in an Eulerian manner. 

Igra and Ben-Dot3 conducted a numerical study of the relaxation zone behind a normal 
shock in a dusty gas. The panicle phase was added in an Eulerian fashion and various 
representations of the drag coefficient, CD, and the Nusselt number, Nu, were examined. 
For the Mach numbers considered in the current study, compressibility effects in the CD 
formulation and radiative heat transfer in the energy equation were found to be negligible. 

Additional numerical studies based on Sommerfeld's experimental data were conducted 
by Olim, et al. 4 using a one-dimensional Eulerian two-phase formulation in conjunction 
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with a finke difference FCT method. The study was used to show that the attenuation of the 
shock wave takes the form of an exponential decay curve. The choice of FCT showed 
marked improvement over Sommerfeld's random-choice method. 

2. NUMERICAL METHOD 

2.A. Gas Equations 

The gas equations were integrated based on an Eulerian frame of reference. The 
governing equations for this flow are written in conservation form as 

0U 3Fj 
a + N  =s (1) 

where the summation convention is used and 

E°I U = pu i , Fj = 
pe 

puj 

puiuj + PSij 

uj(pe + p) 
E ° ] , S = -Di  

-Q - u p i D  i 

(2) 

where Di is the component of drag force per unit volume of the gas in the i direction on the 
particles, and Q is the heat transferred from the gas to the particles. The state equations are 

1 1 
P = (7 - 1)p[e - g ujuj], T = [e - ~ ujuj]/Cv (3) 

where p, p, e, T, k, 7, and Cv are density, pressure, specific total energy, temperature, 
thermal conductivity of the fluid, ratio of specific heats, and specific heat at constant 
volume, respectively, and ui is the component of the fluid velocity in the i direction of a 
Cartesian coordinate system. Quantities with a subscript p indicate a discrete phase 
quantity. These equations were integrated in time by limiting a high order solution (which 
included interphase source contributions) with a low order contribution as described in 
Ltihner, et al. 5, for the FEM-FCT method. A two-step second-order Taylor-Galerkin 
algorithm was used to produce the high order solution. Grid adaption was employed to 
optimize the distribution of grid points by refining areas with high gradients of density and 
coarsening areas of low gradients of density. 

2.B. Particle Description: Eulerian 

For the two dimensional case, five particle equations 4 were added to solve for the five 
particle unknowns: spatial density (~), particle u velocity, particle v velocity, particle 
energy, and number density (n). The two densities are defined as: 

mass of particles number of particles 
a = unit Volume ' n = unit volume 

The two densities are required to allow for a variable particle diameter, such as occurs in 
combustion or evaporation.The particle equations then become: 

~Up ~Fpj _ 
3t  + ~ - Sp 

(4) 
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where: 

Up = t3Upi 
t3ep 

n 
, Fp j=  

(YUpiUpj 

Upj~ep 

nUpj 

, S p =  

0 
Di 

Q + upiDi 
0 

(5) 

where Up and ep are the particle velocity and specific energy. FEM-FCT was used to 
advance these equations similar to that used for the gas equations, except that the limiter 
was modified to prevent non-monotonic behavior in the non-conservative velocities. 

The particles affect the gas through the interphase coupling terms Di and Q. The drag 
force per unit volume, Di, is: 

Di = ~  npCDlui - Upil(Ui- Upi)d 2 (6) 

where summation is not carried out over the indices, d is the particle diameter, and CD is 
the coefficient of drag. The CD used was given by Clift, et al. 6 as: 

24 CD = ~-~ (1 + 0.15Re 0.687) (7) 

where this CD is valid for Re < 800, and Re is the flow Reynolds number based on slip 
velocity defined by: 

Re-Plu- upld (8) 
g 

The heat transferred from the gas to the particles is described by4: 

Q = A.n.[h.(T - Tp) + e*.(T 4- @p)] (9) 

where A is the area of the particle @d2), h is the coefficient of heat convection, c* is the 
Stefan-Boltzmann constant, and T is the temperature. Since the particles are inert and M0 is 
small, the radiation term was ignored. The coefficient of heat convection is: 

Nu.k 
h -  d (10) 

where Nu is the Nusselt number, and the thermal conductivity of the gas, k, is taken as a 
constant, 1.787.103 g/cm.s. Nu was formulated with: 

Nu = 2 + 0.459.pr0.333.Re 0.55 (11) 

where the Prandtl number, Pr, is taken as a constant, 0.75. 

2.C. Particle Description: Lagrangian 

The Lagrangian description was implemented by tracking individual groups of 
particles, referred to as parcels 7. The previous timestep's gas characteristics are 
interpolated to each parcel to determine the interphase coupling terms, using the same 
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equations as the Eulerian coupling terms. The parcel shape functions are then used to 
scatter each parcel's contributions to the host element's nodes. The Lagrangian parcel 
equations 7 are then solved directly for each parcel to update the parcel unknowns: 

dxpi 
dt = UP i (12) 

dupi = 3p 
CD(Ui - Upi)[ui - upil (13) 

dt 4ppd 

dTp k 
dt = 6 Nu (T - Tp) (14) 

Cppd 2 

where C is the specific heat capacity of the parcels. A large part of the coding change 
required to implement the Lagrangian description involved determining which 
computational element contained a given parcel after the parcel had moved or when the 
unstructured mesh was refined/coarsened. The use of a vectorized successive neighbor 
search 8 was found to provide an elegant solution to this problem. 

3. DISCUSSION 

Figure 1 shows the numerical domain used in the study. The particles consisted of 
glass spheres with an average diameter, d = 27 ~tm, a particle density pp = 2.5 g/cm 3 
and a specific heat C = 7.66.106 cm2/s2.K. The shock was initiated upstream of the 
particle region in the single phase domain. 

Figure 2 shows a comparison of the Sommerfeld 2, Olim et al. and FEM-FCT (with 
both Eulerian and Lagrangian particles) data for the case of a shock with initial Mach 
M 0 = 1.25 propagating into a dusty gas with loading ~1 ( = or/O) = 0.63. All predictions 
tend to overestimate the attenuation. At four meters, data from Olim et al. give better 
predictions than the FEM-FCT data or the Sommerfeld data. Both Eulerian and Lagrangian 
versions of FEM-FCT gave similar results. This was the only case Olim et al. computed. 

Figure 3 shows a comparison of the Sommerfeld 2 and FEM-FCT data (with only 
Eulerian particles) for the case of a shock with initial Mach M0 = 1.49 propagating into a 
dusty gas with loading rl = 0.63. Both the Sommerfeld predictions and the FEM-FCT 
predictions gave reasonable agreement. 

Figure 4 shows a comparison of the Sommerfeld 2, FEM-FCT data (with only Eulerian 
particles) for the case of a shock with initial Mach M0 = 1.48 propagating into a dusty gas 
with loading rl = 1.25. FEM-FCT gave excellent agreement with experiment, especially 
during the first meter. Data from Sommerfeld tend to underpredict the attenuation at the 
beginning of the computation and overpredict near the end. Such a discrepency may be 
consistent with the drag coefficient chosen by Sommerfeld. 

4. CONCLUSIONS 

The developed FEM-FCT has been shown to give good agreement with experimental 
results. Lagrangian and Eulerian implementations give similar results. However, the 
current Lagrangian version requires much more memory and CPU time due to the need to 
saturate elements with parcels in order to guarantee that a reasonably uniform parcel 
distribution will exist after mesh refinement. Similar parcel refinement is required to reduce 
the number of parcels that must be maintained. 
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F A S T - C O N V E R G E N T  M E T H O D  FOR F I N D I N G  S T E A D Y - S T A T E  

S O L U T I O N S  OF T H E  EULER E Q U A T I O N S  

!. L Sot  r o n o v  

K e l d y s h  I n s t i t u t e  o f  App l i ed  M a t h e m a t i c s ,  M o s c o w  

I n t r o d u c t i o n  

T h e  m e t h o d  based on  t h e  e x p l i c i t  L a x - W e n d r o f f - t y p e  

d i f f e r e n c e  s c h e m e  a n d  spec ia l  p r o c e d u r e  a c c e l e r a t i n g  t h e  

p r o c e s s  o f  t e m p o r a l  b u i l d - u p  is s u g g e s t e d .  A c c e l e r a t i o n  

p r o c e d u r e  uses  t h e  s t a n d a r d  fas t  F o u r i e r  t r a n s f o r m  

a l g o r i t h m  t o  m o d i f y  t h e  r e s idua l s  o n  e a c h  s t e p  o f  t h e  

t e m p o r a l  i n t e g r a t i o n  p rocess .  N u m e r i c a l  e x p e r i m e n t s  s h o w  

t h a t  t h i s  p r o c e d u r e  is n o t  worse  in e f f i c i e n c y  t h a n  a 

m u l t i g r i d  o n e .  C o m p u t a t i o n a l  c o s t s  are  a lso e c o n o m i z e d  by  

d e c o m p o s i t i o n  o f  t h e  g iven  d o m a i n  i n t o  s u b d o m a i n s  w i t h  

e m b e d d e d  f i n e r  g r i d s .  U s i n g  t h e  a c c e l e r a t i o n  a l g o r i t h m  and  

t h e  d e c o m p o s i t i o n  p r o c e d u r e  o f  f l o w  i n t o  s u b d o m a i n s  w i t h  

s i m p l e  a n d  c o m p l i c a t e d  f l o w  s t r u c t u r e  o n e  m a y  r e d u c e  t h e  

c o m p u t a t i o n a l  c o s t  t i l l  5 - 2 0  t i m e s  d e p e n d i n g  o n  a p r o b l e m .  

T h i s  paper  c o n t a i n s  o n l y  t h e  d e s c r i p t i o n  o f  t h e  

c o n v e r g e n c e  a c c e l e r a t i o n  idea  ( m e t h o d  in d e t a i l s  a n d  

n u m e r i c a l  r e s u l t s  were p u b l i s h e d  in [1]). S o m e  

g e n e r a l i z a t i o n  o f  t h i s  idea is a lso g iven  here .  

1. S p e c t r a l  a n a l y s i s  a n d  { d e a  o f  a c c e l e r a t i o n  

C o n s i d e r  in t h e  squa re  x ~ [ - n , n ] ,  y ~ [ - n , n ]  t h e  

s p e c i m e n  e q u a t i o n  

(1) u t + u x + u y  + f ( x , y )  = 0 

w i t h  t i m e - i n d e p e n d e n t  p e r i o d i c  b o u n d a r y  c o n d i t i o n s  in b o t h  

d i r e c t  i o n s .  
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L e t  u 0 be t h e  s t e a d y  s t a t e  s o l u t i o n  o f  t h i s  

e q u a t i o n .  S t a r t i n g  f r o m  s o m e  f u n c t i o n  u ( x , y )  g i v e n  a t  

z e ro  t e m p o r a l  p o i n t  a n d  u s i n g  t h e  L a x - W e n d r o f f - t y p e  s c h e m e  

we b u i l d  t h e  d i s c r e t e  p r o c e s s  o f  f i n d i n g  u 0 A c c o r d i n g  t o  

t h i s  ' s c h e m e  t h e  v a l u e  o f  ~ , t h a t  i s  t h e  v a l u e  o f  u on  

u p p e r  t i m e  leve l ,  is  c a l c u l a t e d  as 

rt = u + T u  t + ~ 2 u t t  

w h e r e  "~ i s  t h e  t i m e  s t e p .  E x p r e s s i n g  u t a n d  u t t  f r o m  

(1) a n d  i n t r o d u c i n g  a d d i t i o n a l  p a r a m e t e r  a w h i c h  

i n f l u e n c e s  t h e  s t a b i l i t y  o f  t h e  p r o c e s s ,  we o b t a i n  

T2 
: u - + a T (,,xx+ Uxv+Uuy+rx+ru) 

T h e  e v a l u a t i o n  o f  d e v i a t i o n  u = u - u 0 

d e s e r t  bed  as  

T 2 
(3) ~ = u - T ( U x + V y )  + a T ( U x x + 2 V x y + U y  v )  

In o r d e r  t o  a n a l y z e  t h e  b e h a v i o r  o f  v l e t  us  

i n t r o d u c e  t h e  d i s c r e t e  s e t  I = ( 0 ,  +_h, +-'2h, . . . .  +-I), h -- 

I / N  , N i s  n a t u r a l ,  a n d  r e p r e s e n t  v as  

(4) v = E E a ~ e  - i ( ~ x + n v ) / h _  

W e  o b t a i n  f r o m  (3) a n d  (4) 

A~:. 0~. o f  t h e  t r a n s i t i o n  t o  t h e  n e x t  

h a r m o n  i c a  a~a~e - i ( ~ x ÷ a g y ) / h ~  e q u a l s  t o  

~ . ~  = I - i r ( ~  + "o) - a ~ 2 ( ~  + "0) 2 , r = T / h  

C o n s e q u e n t l y ,  

2 

Let  us  i n t r o d u c e  t h e  o p e r a t o r s  M a n d  M 2 

an a r b i t r a r y  f u n c t i o n  o f  k i n d  (4) ,  as  f o l l o w s  

(6) 

i s  o b v i o u s l y  

t h a t  t h e  a m p l i f i c a t o r  

t i m e  level  f o r  s o m e  

a c t i n g  o n  

e - i f ~ x  ÷ r t y ) / h  
M v  = ~ ~ a ~ .  0 , M 2 = M M  

P a r a l l e l  w i t h  (2) c o n s i d e r  t h e  p r o c e s s  
2 

= u - T M ( u  x + U y  ÷ f )  ÷ alrT M 2 ( U x x + 2 U x y ÷ U y y ÷ f x  ÷ f t t )  
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A n a l o g o u s l y  t o  (5) we ge t  t h e  f o l l o w i n g  e x p r e s s i o n  

( 7 )  I A ~ . O [ 2  = ! - ( a - l ) r2~  * "0)2 ÷ 

for  the ampl i f icafor ~ r t  corresponding to (6). 

To c o m p a r e  f o r m u l a e  (5) a n d  (7) le t  us  f i x  n u m b e r s  

a > 1, a n d  r, 0 ~ r ~ [ - 2 ( a - l ) _ ] O ' 5 / a  ( in  t h i s  sca le  I?~.0[ 

1) a n d  f i n d  f r e q u e n c i e s  (~,a9) y i e l d i n g  l a ~ l  > 1 - ~  , 

w h e r e  ~ > 0 is s o m e  smal l  n u m b e r .  F i g s .  l , a  a n d  1,b  

rT 

a 

F i g .  1 
s h o w  t h e  r e g i o n s  o f  c o r r e s p o n d i n g  
t h e s e  r e g i o n s  are  d e s c r i b e d  by  t h e  e q u a t i o n s  

(~,'o). T h e  b o u n d a r i e s  o f  

= { (-1 +_ ~ ) ~ i  , I~1 : I~1 : h / , / 2 ~  

f o r  (5) 

f o r  (7) 

w h e r e  c3 ~_ 2 ~ / f f r 2 ( a - l ) f f  f o r  s u f f i c i e n t l y  smal l  ~-. 

F r o m  t h e  v i e w p o i n t  o f  c o n v e r g e n c e ,  t h e  p roce s s  (6) is 

m o r e  p re fe rab l e  t h a n  (2) s i n c e  i t  has  b e t t e r  d i s s i p a t i o n  

p r o p e r t i e s .  F i g .  1,b  s h o w s  t h a t  in t h e  f i r s t  a n d  t h e  

t h i r d  q u a d r a n t s  t h e  r a t e  o f  d r o p  in r e s idua l  does  n o t  

d e p e n d  o n  (~,'0) , i . e .  on  f r e q u e n c y  o f  h a r m o n i c a .  Indeed ,  

i t  f o l l o w s  f r o m  (7) t h a t  

2 m a x / /  - ( a - 1 ) r  2 +0 .25a2r  4, 1 - 2 ( a - 1 ) r  2 +a2r  4 }  I ~ ' o l  < 

d = 2, r = 

In l , lE l  
i n ( 7 )  is 

f o r  ~,a9 of  t h e  same  s i g n s .  Fo r  example ,  if 

0.5 t h e n  I ~ 1  < o . 9  . 

M o r e o v e r ,  f o r  all l ow f r e q u e n c i e s ,  i .e .  f o r  

rth, rt = 1, 2 . . . . .  ¢ h - l ,  t h e  value  12t~.o[ 
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a l so  r e s t r i c t e d :  

I A ~ I  < 1 - O . 1 2 5 ( a - l ) r 2 / n  2 

T h e  a b o v e  d i s t i n c t i o n  in  p r o p e r t i e s  o f  (2) a n d  (6) 

l e a d s  t o  t h e  c o n v e r g e n c e  a c c e l e r a t i o n  o f  t h e  p r o c e s s  (6) 

in  c o m p a r i s o n  w i t h  (2) N u m e r i c a l  e x p e r i m e n t s  f o r  t h e  

real  p r o b l e m s  s h o w  t h a t  t h i s  r e d u c t i o n  in  a t e m p o r a l  s t e p s  

n u m b e r  m a y  r e a c h  2 - 1 2  t i m e s .  

2. D i f f e r e n c e  s c h e m e  a n d  m e t h o d .  

In o r d e r  t o  o b t a i n  s o l u t i o n  a t  t h e  u p p e r  t i m e  level  

u s i n g  t h e  L a x - W e n d r o f f  s c h e m e  o n e  a d d s  t w o  t e r m s  - o f  t h e  

f i r s t  a n d  t h e  s e c o n d  o r d e r  in  t i m e  - t o  t h e  s o l u t i o n  a t  t h e  

l o w e r  t i m e  leve l :  

X ( t ÷ T )  ~ X ( t )  ÷ T X  t ÷ ~ 2 X t t  , 

w h e r e  X = (p ,  p u ,  p v ,  e )  T i s  t h e  v e c t o r  o f  gas  d y n a m i c s  

v a r i a b l e s ;  T i s  t i m e  s t e p .  W h e n  t h e  o r i g i n a l  c o n  t i n ual  

p r o b l e m  is  r e p l a c e d  by  a d i f f e r e n c e  o n e ,  t h e  q u a d r i l a t e r a l  

b o d y - f i t t e d  g r i d  in  t h e  c o m p u t a t i o n a l  d o m a i n  i s  i n t r o d u c e d  

a t  f i r s t .  T h e n  t h e  E u l e r  e q u a t i o n s  a r e  b e i n g  a p p r o x i m a t e d  

o n  t h i s  g r i d  b y  t h e  s c h e m e  o f  L a x - W e n d r o f f  t y p e  o b t a i n e d  by  

u s i n g  t h e  f i n i t e  v o l u m e s  m e t h o d .  A r t i f i c i a l  v i s c o s i t y  t e r m  

is  a l s o  a d d e d  t o  t h i s  s c h e m e .  T h e  r e s u l t i n g  r e s i d u a l  AX t o  

n e x t  t i m e  level  in  e a c h  g r i d  n o d e  i s  t h e  f o l l o w i n g :  

( 8 )  a x  = A x  (1) + A x  (2)  + A x  0 ' )  , 

w h e r e  A X  (1)  is  r e s i d u a l  o f  t e r m  T X  t , A X  (2 )  i s  

r e s i d u a l  o f  t e r m  ~ 2 g t t  , A X  (u )  i s  r e s i d u a l  o f  a r t i f i c i a l  

v i s c o s i  t y .  

In o r d e r  t o  a c c e l e r a t e  c o n v e r g e n c e  u s i n g  t h e  i d e a  

w h i c h  was  c o n s i d e r e d  in  S e c t . l .  we c h a n g e  f o r m u l a  (8) by  

i n t r o d u c i n g  t w o  a d d i t i o n a l  l i n e a r  o p e r a t o r s  M (1)  a n d  

M (2):  

Ax = M ( 1 ) [ ~ X  (1) ÷ AX(")]  ÷ M(2)AX (~) 

A p p l i c a t i o n  o f  t h e s e  o p e r a t o r s  is  ba sed  o n  t h e  s i n e  F F T  

a l g o r i t h m .  T h e  c o s t  o f  o n e  t e m p o r a l  s t e p  i n c r e a s e s  b y  7 0 %  
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due to  t h i s  p rocedure  bu t  t he  t o ta l  n u m b e r  o f  steps 

dec reases  over  a n d  over .  

T h e  s c h e m e  o b t a i n e d  has  t h e  s e c o n d  o r d e r  o f  a c c u r a c y  

o n  s m o o t h  s t e a d y - s t a t e  s o l u t i o n s  a n d  resolves  well s h o c k s  

in t r a n s o n i c  case.  

3. A p p l i c a t i o n  for  o t h e r  d i f f e r e n c e  s chemes  

As we have  seen t h e  s u g g e s t e d  a c c e l e r a t i o n  p r o c e d u r e  

r e q u i r e s  i m p l e m e n t i n g  t h e  r e s idua l  by  s u m  o f  t e r m s  

c o r r e s p o n d i n g  t o  d e r i v a t i v e s  in t i m e  of  t h e  f i r s t  a n d  

s e c o n d  o rde r .  T h e  L a x - W e n d r o f f  s c h e m e  g ives  t h o s e  t e r m s  

d i r e c t l y .  In o r d e r  to  a p p l y  t h i s  p r o c e d u r e  f o r  o t h e r  

s c h e m e s  o n e  can  c a l c u l a t e  those  t e r m s  by n u m e r i c a l  

di  f f e r e n  t ta t  i o n ,  n a m e l y :  

&X (1) = (Xn+ 1 - g n _ l  ) / 2 ,  t~X (2) = (Xn+ 1 - 2 X  n +X n _ 1 ) / 2 ,  

w h e r e  Xn_ 1 , X n , Xn+ 1 are s e q u e n t i a l  va lues  o f  X 

c a l c u l a t e d  w i t h o u t  a c c e l e r a t i o n .  

T e m p o r a l  s t e p  w i t h  a c c e l e r a t i o n  is p e r f o r m e d  as 
N 

X n +  1 -- X n + M ( I ) A x  (1) + M ( 2 ) 6 X ( 2 )  

T h e n  o n e  makes  two  nex t  s t e p s  w i t h o u t  a c c e l e r a t i o n :  Xn+ 2, 
N 

Xn+ 3 ; c a l c u l a t e s  AX (1) , AX (2) a n e w  u s i n g  Xn+ 1 , Xn+2, 
N 

Xn+ 3 ; makes  s t e p  w i t h  a c c e l e r a t i o n  t o  o b t a i n  Xn+ 3 a n d  

so  o n .  

N o t e  t h a t  t h e  o r i g i n a l  d i f f e r e n c e  s c h e m e  m u s t  be 

rea l ly  o f  t h e  s e c o n d  o r d e r  In t i m e  s i n c e  t h e  a c c e l e r a t i o n  

p r o c e d u r e  will  n o t  be s t ab l e  in o t h e r  case .  
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N U M E R I C A L  S T U D Y  OF T H E  C L O S E - C O U P L E D  
C A N A R D - W I N G - B O D Y  A E R O D Y N A M I C  I N T E R A C T I O N  

E. L. T u *  

NASA Ames Research Center, Moffett Field, California 94035, USA 

I n t r o d u c t i o n  

Many modern aircraft, both operational and experimental, utilize canards for improved aerodynamic 
performance. The influence of canards can often result in increased maximum lift and decreased trim 
drag. For close-coupled canards, aerodynamic performance is a function of the aerodynamic interaction 
between the canard and wing. However, depending upon geometry and flow parameters, this interaction 
can be either favorable or unfavorable. Proper utilization of canards requires an accurate understanding 
of their influence on the structure of the flow about the wing. 

The flow structure of highly-swept or delta canard-wing configurations is characterized by a canard 
downwash which modifies the wing flowfield and an interaction between the canard and wing vortex 
systems. A schematic of tile canard-wing vortex interaction is given in Fig. 1. The downwash of the 
canard modifies the flowfield of the wing within the canard-ti p span-line by decreasing the effective angle 
of attack of the wing. Beyond the canard tip, upwash from the canard increases the wing's effective 
angle of attack. The downwash and upwash effects of the canard have a significant influence on the 
formation of the wing leading-edge vortex. Tile canard downwash can weaken or delay the formation of 
the wing vortex, thus affecting its position over the wing surface. 

Detailed experimental and computational studies have been performed on canard configurations 
and are given in Kef. 1. However, limited computational work has been performed utilizing the Navier- 
Stokes equations, which are required to capture some of the important flow features of the canard-wing 
interaction. With the emergence of faster computers and increased memory capacities, the Navier-Stokes 
equations can now be utilized. 

Using an extension of the NASA Ames Research Center's Transonic Navier-Stokes (TNS) code, 2 the 
thin-layer Navier-Stokes equations are solved for the flow about a highly-swept coplanar canard-wing- 
body configuration. The results of the computations are used in the investigation of the aerodynamic 
characteristics of the canard configuration, including the canard-wing leading-edge vortex interaction and 
its effects on wing vortex breakdown. The current application of the TNS code expands the capability 
for analysis of the complex aerodynamics of canard configurations. 

C o m p u t a t i o n a l  Mode l ing  

Numerical Procedure 

The TNS code is a Reynolds-averaged thin-layer Navier-Stokes flow solver with structured zoning 
capability and has been applied to a wide range of wing and aircraft configurations. Since the TNS code 
solves the Reynolds- (or time-) averaged equations, the Baldwin-Lomax algebraic eddy-viscosity model 3 
is chosen to compute the effects of turbulence on the flow. Due to the vortex-dominated flow structures 
of the highly-swept sharp-leading-edge canard and wing, a modification to the original Baldwin-Lomax 
formulation is required. For this study, the Degani-Schiff modification, 4 as originally developed for 
crossttow type separations, is employed. Without such a modification, the overpredicted eddy-viscosity 
levels tend to dominate the vortical flowfield. Further details about the TNS code, algorithm, zonal 
approach, and general performance are given in Ref. 2. 

Geometry Modeling and Grid Generation 

The geometry in this study is based on the wind-tunnel model used by Gloss and Washburn s and 
is illustrated in Fig. 2. Using the S3D surface geometry and grid generation code, e the canard, wing 
and body component surface geometries are modeled from their original analytical definitions. Further 
details of the S3D code and its applications are given in Ref. 6. 

* Kesearch Scientist 
This  p a p e r  is dec l a r ed  a work of  t he  U.S. G o v e r n m e n t  a n d  t he r e fo re  is in  t h e  pub l i c  

domain .  
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The flowfield grid is generated using the 3DGRAPE program 7 and is illustrated in Fig. 3. The 
3DGRAPE program is a block-type general-purpose elliptic grid generator which allows for user-specified 
orthogonality and normal grid spacing conditions. The flowfield grid is H-O topology, which is ideal for 
this type of configuration because of the natural clustering of grid points in certain regions of the grid. 

Resu l t s  and  Discuss ion 

Experimental Comparisons 

To investigate the influence of the canard, computations are conducted on the wing-body geometry 
with and without a canard. All computational results are for fully turbulent flow at a transonic Mach 
number (Moo) of 0.90, a Reynolds number based on mean wing aerodynamic chord (Ree) of 1.52 million, 
and nominal angles of attack (a) ranging from 0 to 12 degrees. To validate the computational modeling, 
comparisons between the computed results and the force balance and wing surface pressure measurements 
are made. 

A comparison of computed wing surface pressure coefficients (Cp) with experimental data ~ at 
ct ~ 12 ° is illustrated in Fig. 4. Comparisons with the experimental data are given at representa- 
tive wing span-stations of 25% and ,t5% as measured from the Symmetry plane. 

For the canard-off case, the leading-edge vortex is indicated by the suction peak in the Cp distri- 
bution. At this angle of attack, the major canard influence on wing surface pressures is the canard 
downwash effect. Significant differences in wing surface pressure between the canard-on and canard- 
off cases are observed. The effective local angle of attack (nell) of the wing is reduced and the wing 
leading-edge vortex is considerably weakened in the canard-on case. 

Although detailed comparisons of flow quantities such as surface pressure are better measures of 
the computational accuracy, integrated force quantities such as lift, drag, and moments are often used 
to assess the overall aerodynamic performance characteristics of a given configuration. Figure 5 presents 
the comparison of canard-on and canard-off integrated force quantities for the canard-wing-body config- 
uration. The canard-on computations are also compared with experimental data. 5 Figure 5 shows that 
the nonlinearity of the lift coefficient curve for the canard-on case is captured well by the computations. 
For angles of attack less than 6 °, the computed lift coefficients for the canard-off and canard-on cases 
are comparable. At these low angles of attack, the reduction in wing lift due to the canard downwash is 
balanced by the additional canard lift. 

The drag polar in Fig. 5 indicates comparable levels of drag coefficient for both the canard-on and 
canard-off cases. The "cross-over" of the two drag curves shows the potential of the canard configuration 
for reduced drag at a given lift. 

Due to the relative location of the canard and the moment center, the pitching moment curve in 
Fig. 5 illustrates the typical nose-up pitching moment which is characteristic of many canard configura- 
tions. At higher angles of attack, the computations overpredict the nose-up moment of the canard-on 
case. This overprediction is further studied by examining the moment curves of the canard and wing 
regions separately. 

The curves of pitching moment coefficients for different regions of the canard-wing-body configu- 
ration are given in Fig. 6. The forward and aft regions, including the body, (henceforth designated as 
the canard and wing regions) are chosen to correspond with regions measured in the experiment. The 
pitching moment curves show that  the canard's influence on the wing region pitching moment is nomi- 
nal. The nose-up pitching moment of the canard-on configuration is almost entirely due to the canard 
region. Good comparisons with experimental data indicate an accurate distribution of pitching moment 
in the computed results. Figure 6 also shows that  the overpredicted pitch-up moment for the complete 
configuration, noted in Fig. 5, is approximately evenly distributed between the canard and wing regions. 

The effects of grid refinement and a more detailed description of the comparisons between compu- 
tations and experiment are given in ReL 1. 

Visualization of the Canard-Wing Interaction 

For the current configuration, the primary mechanism for the canard-wing interaction is the canard's 
influence on the wing leading-edge vortex. Both the canard downwash and the canard leading-edge vortex 
have pronounced effects on the formation and subsequent trajectory of the wing vortex. At higher angles 
of attack, the canard's influence may extend to delaying or eliminating wing vortex breakdown. 

The dominating effect of the canard downwash on the inboard wing has been illustrated in the 
surface pressures of Fig. 4. Outboard of the canard-tip span-line, the canard leading-edge vortex is the 
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primary mechanism for the eanard's influence on the wing flowfield. Crossflow-plane vortex visualizations 
in the form of normalized total pressure contours at two constant streamwise stations are given in Fig. 7, 
and show the effect of the canard-vortex induced flow on the wing. Although the computed canard 
vortex is considerably weaker than the corresponding wing vortex, its influence on the wing flowfield is 
still significant. For the two co-rotating vortices, each with a counter-clockwise rotation and position 
as shown in Fig. 7, the wing vortex flowfield induces a relative downward and inward motion of tile 
canard vortex while the canard vortex induces an upward and outward movement of the wing vortex. 
In the absence of such interaction, the canard and wing vortex trajectories would be expected to follow 
an upward and outward path which would be dependent upon the angle of attack and respective sweep 
angles. 

The potential for a canard to delay or eliminate wing vortex breakdown is of significant interest 
and has been the topic of numerous experimental and computational studies, some of which are listed 
in Ref. 1. By comparing vortex lift theory with experimental results, Gloss and Washburn 5 found that 
wing vortex burst occurs at ~ .~ 13" for the current canard-off case. For the canard-on ease, their study 
indicated no evidence of wing vortex burst for angles of attack up to 20% 

Figure 8 shows off-surface particle traces for the canard-off case at three angles of attack. At the 
higher angles of attack, increased vortex strength and a relative shift of the core location is observed. 
Evidence of vortex burst is observed at a = 12.38". Crossfiow-plane visualization of scaled axial velocity 
contours in Fig. 9 serves to confirm the presence of vortex breakdown over the wing for the canard-off 
case. Reversed axial flow in the core of the primary vortex is identified as a qualitative indication of 
vortex breakdown, and is observed in Fig. 9. From Fig. 8, the wing vortex burst location appears to be 
near the trailing edge of the wing and indicates that the computed angle of attack for vortex burst is 
approximately 12', which is within reasonable agreement with the experimental observations. 5 

Computed particle traces for the canard-on case at a = 12.38 ° are given in Fig. 10. The lower 
leading-edge-sweep angle of the canard results in a canard vortex burst further upstream of the canard 
trailing edge compared to the wing vortex burst relative to its trailing edge shown earlier in Fig. 8. 
Figure 10 shows a stable wing vortex with no evidence of wing vortex breakdown in the presence of the 
canard. 

Concluding  Remarks  

A numerical investigation of the canard-wing aerodynamic interaction has been performed using the 
Navier-Stokes equations. Favorable comparisons with experimental data verify that the present method 
is capable of predicting the flow about such configurations. 

On the" inboard wing, the canard-induced downwash was found to weaken the wing leading-edge 
vortex at ~ ~ 12 °. The wing vortex on the outboard wing was shown to be influenced by both the 
canard vortex and the aforementioned canard downwash. The presence of the canard was also shown 
to eliminate the wing vortex breakdown which was evident in the canard-off case at (~ ~ 12'. These 
computational results confirm the canard's potential for delaying wing vortex breakdown which has been 
documented in numerous experimental studies. 
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Fig. 1 Schematic of the canard-wing vortex interaction. 
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I N T R O D U C T I O N  - Numerical solution procedures for nonlinear fluid dynamic 
equations usually use one or more artificial computational boundaries located at 
some distance from the primary region of interest in order to limit the physical 
domain to finite size. If the flow crossing such a boundary (either inflow or outflow) 
is subsonic, then some type of computational boundary conditions must be imposed 
which simulate the influence of the true fax-field conditions at infinity. These bound- 
ary conditions must be such that waves propagating outward across the boundary 
do not produce erroneous reflections back into the computational field to degrade 
the calculations. It is generally acknowledged that simply imposing free stream 
conditions (or conditions at infinity) at computational boundaries is usually inap- 
propriate because they pr6duce spurious reflections back into the computational 
domain. Standard practice consists of locating the boundaries quite far from the 
region of interest in an attempt to simplify the boundary condition models and min- 
imize any effects of inconsistent modeling. The net effect is a significant increase in 
the number of grid points required for an accurate flowfield calculation. 

Boundary modeling procedures for two-dimensional internal and external flows 
have been developed in References [1] and [2] which alleviate the difficulties men- 
tioned above and allow the computational boundaries to be located much closer to 
the nonlinear region of interest. The procedure is limited to steady, inviscid flow, 
although the flow can be rotational. It represents a logical first-order asymptotic 
extension of the so-called characteristic (referred to as zero-order herein) boundary 
conditions commonly used with inviscid or viscous numerical solution methods. It 
also illustrates a consistent method for coupling lineaxized analytic solutions with 
nonlinear numerical solutions by means of computational boundary conditions. The 
procedure is derived from the Euler equations. Therefore, it is applicable to flows 
which have strong entropy producing effects (e.g., shock waves) within the computa- 
tional region. Such effects can produce large variations in density and Mach number 
in the far-field in the direction normal to streamlines which persist to infinity and 
which cannot be treated as small perturbations. A potential flow description of such 
a far-field containing rotational flow is inappropriate. 

Many fax-field boundary condition models are derived by linearizing the steady 
or unsteady fluid dynamic equations (usually Euler) about constant far-field condi- 
tions and solving the resulting system assuming a generalized wave form. However, 
their utility is compromised if strong rotational effects are produced in the com- 
putational domain, because flow variables other than pressure and flow angle are 
not constant in the far field if the flow is treated as inviscid and subsonic. In that 
case linearization in terms of primitive or conservative variables yields perturbation 
quantities which do not vanish at infinity. Moreover, linearization about average 
far-field conditions becomes questionable if rotational effects are strong. It was 
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shown in Reference [1] that  conditions are achieved readily where a shock wave pro- 
duces far-field Mach numbers which vary normal to streamlines by a factor of two. 
Streamline-normal gradient variations in some cases can be even more pronounced 
which cause strong interactions to persist in the far field. It was also shown in 
Reference [1] tha t  a linearization with decaying perturbations is possible, but  the 
linear system has non-constant  coefficients. 

The present boundary  condition analysis is based on a Riemann variable for- 
mulation of the Euler equations given in Reference [3]. This represents a natural  
starting point because the zero-order (or characteristic) boundary  conditions for 
subsonic flow mentioned above are expressed in terms of Riemann variables. The 
equations are linearized about  a constant pressure, rectilinear flow condition, which 
truly represents conditions at infinity. These linearized equations are assumed ap- 
plicable in the far-field region beyond a computat ional  boundary. The first-order 
linearized Euler equations are solved using integral t ransform and Fourier analysis 
techniques coupled with an iterative procedure. Coupling of these analytic solutions 
with a nonlinear numerical solution is accomplished by the boundary conditions in 
an unambiguous manner.  The analytic solutions provide a smooth transition across 
the computat ional  boundary  to the true far-field conditions at infinity. The first- 
order boundary  conditions are in the form of distributions of flow quantities to be 
imposed along the boundary,  not constant conditions. The additional computat ional  
effort required to impose the first-order boundary conditions is modest.  Further-  
more, the boundary  analysis can be coupled with any inviscid numerical solution 
method. It can also be coupled with a viscous method by expressing a wake as 
a vorticity distribution and convecting this distribution downstream via the Euler 
analytic model. 

A N A L Y S I S  - The system of two-dimensional, steady, linearized Euler equations 
which describe first-order perturbat ions from a constant pressure state is derived 
from the Riemann variable formulation of Reference [3]. This formulation is used 
because of its close relationship with zero-order (or characteristic) boundary  condi- 
tions commonly used in nonlinear numerical solution methods. These equations in 
natural  streamline coordinates are 

OQ OQ, "721 qaS 08 "72 1 a(S - 2 0 2 
O-T + (q+a) Os -- -~n ~--l)[O--ss (q - "7--1 a)] 

OR OR "7-1 ,.,00 ~ 2 0 2 
- ~  + ( q - a ) - ~ s  = + - - ~ - q a ~ - ~ n  + a(S - ) [ ~ s ( q +  "7-1 ~ - 1  a)] 

00 O0 a 2 OP 0 S  c3S 
- ~  --F q-~s - "7q On '  O----t -t- q ~ s  = 0 

The Riemann variables Q and R are defined as Q -- q + aS  and R =- q - aS,  S is 
entropy, and 0 is the flow angle. Velocity magnitude and speed of sound are denoted 
by q and a, respectively, and P is the logarithm of pressure. 

For steady flow the analysis can be greatly simplified by defining a new de- 
pendent  variable T -= Q - R. In far-field regions of a flowfield where asymptotic 
conditions prevail, the flow can be t reated as a per turbat ion to a constant pressure, 
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rectilinear subsonic flow. Such regions occur near and beyond far-field computa- 
tional boundaries. The dependent variables in the Euler formulation can then be 
expanded in asymptotic series 

T = T O O + T I + T 2 + . . . ,  0 = 0 o o + 0 1 + 0 2 + . . . ,  S = S o o + $ 1 + $ 2 + . . .  

The flow direction at infinity is assumed constant and denoted by 0oo ; the perturba- 
tion quantities T1, 01 and $1 vanish at infinity. Entropy variation is not excluded so 
that the flow can be rotational in which case Soo and Too are not constant, but vary 
normal to the streamline direction. Furthermore, far-field entropy variations can be 
strong (i.e., not small perturbations). Analytic solutions of the first-order perturbed 
Euler equations were developed in References [1] and [2] for various computational 
far-field boundary shapes associated with internal and external flows. The first- 
order boundary conditions were then developed from these analytic solutions. 

A P P L I C A T I O N S  - Euler airfoil calculations were carried out for a NACA 0012 
airfoil using the ET12D and the FLO672D codes. These two-dimensional codes are 
derivatives of their three-dimensional counterparts (References [4] and [5]) and are 
based on different numerical solution algorithms. 

Reference Euler results were calculated using a baseline C-grid whose far-field 
boundaries were located at a large distance (approximately 40 chord lengths) from 
the airfoil. The calculations were repeated on a much smaller core grid using both 
the zero- and first-order boundary conditions. The small core grid shown in Fig. 1 
had 209 points distributed along the C-curves and 41 points in the outward direction. 
It extended one chord length upstream of the airfoil leading edge and one chord 
length downstream of the trailing edge. The large baseline grid had dimensions 
273x65 and was constructed by simply adding parabolic C-lines outside of the core 
grid inflow boundary and vertical lines downstream of the outflow boundary. The 
small grid had 52 percent fewer grid points than the baseline grid. The relative 
locations of the outer boundaries of the two grids are shown in Fig. 2. 

I sen t rop le  Flow: For a free stream Mach number of 0.50 and angle of attack of 
4 degrees, boundary condition accuracy can be quantified by comparing computed 
lift. Figure 3 shows the variation in lift coefficient predicted by the FLO672D code 
using the zero- and first-order boundary conditions as the downstream boundary 
location is moved upstream toward the airfoil. With the first-order boundary condi- 
tions, the lift coefficient remains essentially constant. With the zero-order boundary 
conditions, accuracy degrades rapidly as the downstream boundary distance is de- 
creased. Consistency of the coupling between the nonlinear numerical solution and 
the analytic solution is demonstrated by the pressure contours shown in Fig. 4. 
Near-field contours of the ET12D computation on the core grid match smoothly 
with far-field contours of the analytic solution. Only a modest increase in computa- 
tional effort (approximately five percent) was required for the first-order boundary 
conditions. An additional efficiency gain was also provided in that fewer iterations 
were typically required for solution convergence because of the closer proximity of 
the far-field boundaries. 
No n - I s e n t rop l e  Flow: With a free stream Mach number of 0.85 and angle of 
attack of zero, shock waves occur on the upper and lower surfaces of the airfoil. 
This case was calculated using the ET12D code with the downstream boundary lo- 
cated one chord from the airfoil trailing edge and the overall boundary at ( B C D B ) .  
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Pressure contours are shown in Figs. 5 and 6 which compare results using zero- 
and first-order boundary  conditions, respectively, with the reference solution. Very 
accurate results are obtained on the small grid when the first-order conditions are 
used. Surface Mach numbers  predicted by FLO672D using the core grid (GHIG) 
are presented in Fig. 7. 

V i s c o u s  F l o w :  Viscous flow results were calculated for a NACA 0012 airfoil using 
the CFL2D code (Reference [6]). The  small core grid was modified by clustering 
points in the boundary  layer and increasing its dimensions to 209x61. The down- 
s t ream boundary  was located one chord from the airfoil trailing edge at BD (see 
Fig. 2) to demonstrate  the applicability of the first-order boundary  conditions to 
viscous flow. The free s t ream Mach number  for these calculations was 0.80, angle 
of at tack was 0 degree, and the Reynolds number  was 1 million. A Baldwin-Lomax 
turbulence model was used. Surface pressures calculated using zero- and first-order 
boundary  conditions on the downstream boundary (BD) are compared with the 
reference solution in Fig. 8. Figure 9 shows the effect of the boundary conditions 
on the velocity boundary  layer. 

I nv i s c id  D u c t  F low:  Steady converging/diverging duct flow results were calcu- 
lated using the ET12D code. The duct geometry and grid are shown in Fig. 10. 
The computat ional  grid for the sinusoidal portion of the duct had dimensions 41 x 
21. Additional rectangular 'grid cells were added within the constant area sections 
of the duct. Results for isentropic, subsonic duct flow are shown in Fig. 11. Only 
one column of grid cells was used in the upstream and downstream constant-area 
portions of the duct. The linearized far-field analytic solution provides a smooth 
transition across the computat ional  boundary  to the true far-field conditions at in- 
finity. Non-isentropic duct flow results are shown in Fig. 12. Five columns of grid 
cells were used in the constant area sections of the duct. 

S U M M A R Y  - Far-field computat ional  boundary conditions have been developed 
for two-dimensional internal and external flow problems. These first-order boundary  
conditions are derived from analytic solutions of the linearized Euler equations and 
represent a logical extension of the zero-order (or characteristic) boundary  condi- 
tions commonly used in the numerical solution of nonlinear fluid dynamic equations. 
The first-order boundary  conditions allow the far-field boundaries to be located 
much closer thereby reducing the number  of grid points needed for the numerical 
solution and also the number  of iterations for solution convergence. This allows a 
significant reduction in the amount  of computat ional  effort required for the nonlin- 
ear numerical solution because the additional calculations required for the first-order 
boundary conditions are modest.  Results are shown where the number  of grid points 
was reduced by approximately 50 percent. 
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N U M E R I C A L  S I M U L A T I O N  OF I N V I S C I D  A N D  V I S C O U S  
F L O W  W I T H  H I G H  O R D E R  A C C U R A T E  S C H E M E S  

Ma Yanwen and Fu Dexun  
( LNM, Institute of Mechanics, Chinese Academy of Sciences, 

Beijing, 100080, P.R. China ) 

1. I n t r o d u c t i o n  

Computational fluid dynamics develop very fast, and many practical problems have been 
solved with second order accurate schemes. Now we are interested in detail structures of 
complex flow field, such as vortex motion, mixing layer flow , and turbulent flow. For 
solving this kind of problems the harmonics with moderate and high wavenumbers must be 
simulated well. 

The R-K method can be used in time integration, and only space diseretization is 
discussed. One way to improve the accuracy of solution is to increase the number of mesh 
points. But it is impossible for the complex flow field simulation because of limitation of 
computer power. The another way is to increase the order of spatial approximation. It was 
shown in ref.[1] that  high order accurate difference approximations for the first and sec0ad 
spatial derivatives can give better approximation of effective wavenumber for the moderate 
and high wave number. 

Before using high order accurate schemes several questions have to be answered. 

2. Dif ference  A p p r o x i m a t i o n s  

Consider the model equation 

au Of 
0-7 + = o, f = (1) 

and it's semi-discrete approximation 

auj  _.}__l F. 
Ot + A =  ~ = 0 (2) 

where Fj is a approximation of Azaa-~z, and it can be obtained from the equation 

= - h + k )  (3)  
k k 

Some relations must be satisfied between ~k and ilk. The 4th order accurate compact 
difference and the 3rd order accurate upwind compact difference for c > 0 are listed below 

2F.  1F  1 F j+ I  -t- 3 .1 -I- ~ j - I  = ~ ( f j + l  - -  f.,/-1) 

1 2F.  1F  5( f j  / j - l )  g(f#+l -- /j) 
3 J - ~ ' 3  3 " -1=  -- "~- 

3. Dif fus ion  A n a l o g y  

Using the modified equation for kth order accurate difference scheme (2) we can get the 
following diffusion analogy equation [2] 

This work is supported by National Natural Science Foundation of China 
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Ou Of a au (4) 

where # is called diffusion analogy coefficient and it is defned as follows 

(a%aI  
# = aA=k-1 ka~k ~ a = / c  (5) 

The behavior of the solution for difference scheme near the shock (continuous solution with 
steep gradient) depends on the concrete scheme, the order of approximation, and the ratio 
akf /c~f 
a-~z / h-~. 

4. Restriction on the Mesh Reynolds Number ReA= and Stability Analysis 

Consider the following model equation and it's difference approximation 

au a /  a _Ou 
at + a= - ~ (6) 

a,,~ i F .  #---s. (7) 
a--t- + A z  J = A z  = ~ 

A~2 @2u where /~ is the physical diffusion coefficient , S i is a approximation of ,~ ~x. Taking 
leading term of the modified equation, the following equation can be obtained 

at + o= a= (p + a~ , )  (8)  

It is reasonable to require IA=. I  < #, or 

a /  k_t ak,f c 
Re, , .  < , .  Re, ,= = A , , _  (9) 

# 

The restriction on ReAx depends on the accuracy of the scheme, and behavior of the 
solution. Generally speaking, for the high order accurate schemes with smooth solutions 
the restriction on ReAz can be relaxed. 

Consider equation (1),(2) and (4). Putt ing a elementary solution u -- e ~+~'~z into 
equation(5) for the case k + 1 = 2n where n is a integer, we can obtain 

# = o ' e ( m A x ) 2 ( " - l ) ( - 1 ) n - 1  (10) 

For the coefficient to be positive the following inequality for stability is required 

oe(--1) " -1  ) 0 (II) 

This is the same requirement as obtained in Ref.[3]. Satisfication of condition (11) does 
not guarantee to get solution without nonphysical oscillations. Careful study of the exact 
solution of the nonlinear Burgers' equation shows: 
(a) for the case k = 2 the oscillations may be produced only in one side of the shock; 
(b) for the case k : 2n(n > 1) the oscillations may be produced in both side of the shock, 
but the oscillation with the largest amplidute exists in one side of the shock; 
(c) for the case k -- 2n + 1 the oscillations may be produced in the both side of the shock, 
but with satisfication of (11) the oscillation with the largest amplidute is removed. This is 
the reason why the upwind biased scheme can give better solutions. 

5.High Wave Number Effect 

A. Large Diffusivity of High Order Upwind Scheme 
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Suppose condition (11) is satisfied. From expression (10) it can be seen the diffusion 
analogy coefficient increases with increasing the wave number. For the small and moderate 
wave number the diffusion analogy coefficient decreases rapidly with increasing the order 
of accuracy of approximation. Effect of large diffusivity for the high wave number can be 
improved with increasing mesh points. 

B. Severe Deformation of Harmonic with High Wave Number for the Symmetric Differ- 
ence 

For the elementary solution e at sin(rex) we have 

p = (-1)"ca(rnAz)=n-ltg(rn=) (12) 

From expression (12) it Can be seen that  # oscillates across zero with large amplitude for 
the high wave number, and the harmonic is severely deformed. The deformation is smaller 
for the low and moderate wave number for the high order accurate scheme. 

C. Restriction on ReA= for the Harmonic with High Wave Number 
Putting e ~t sin(rnz) into equation (9) we can obtain 

Re,x= < I ~ [ ,  for k = 2 n +  1, (dissipative difference) 

ReA= < a{m,x=)=--lsin(,~z) ' for k = 2n, (symmetric difference) 

It can be seen that  the restriction on the mesh Reynolds number is smaller for the dissipative 
scheme. It also can be seen that  for the high wave number the restriction on Re,x= is severe, 
but for the low and moderate wave number the restriction is small. 

From above discussion we see the high order accurate scheme can give better numerical 
solutions. The high wave number effect can be improved with increasing mesh points. 

6. C o n s t r u c t i o n  o f  Scheme  w i t h  H i g h  l~esolut ion o f  t he  Shock  

In order to get high resolution of the Shock the diffusion analogy coefficient must be 
reconstructed. 
Three methods of reconstructing p for the kth order accurate difference schemes are sug- 
gested: (a)Waking absolute value; (b)Vsing simple minmod function; (c)Vsing logarithm- 
minmod function. For example, for the fourth order accurate difference scheme we have 

3[a4f ,O3f~ [as/,a2f~ (a2f /i)f~ 
A 

One of it's difference approximation is 

Pi+} a ( l -  I , -  2,- I -  z ' -  = 

where 
~z f i+ l  + 1 3  1,-I- ~ / j - l -  1 2,4- ( ~z.t . /+l  "~ :El ~ "  3,4- 

n)::{: 
For making Pi+} positive the minmod function can be used for ~/1+]" 

7. N u m e r i c a l  E x a m p l e s  

A. Driven cavity flow [4]. 2-D incompressible N-S equations are approximated with 3rd 
order accurate upwind compact difference for the convection terms. With increasing the 
Reynolds number periodic motion is found. The stream lines on different time steps for case 
Re = 10000 are given in Fig.1 
B. 2-]:) shock reflection. The fourth order accurate compact differences are used to approx- 
imate the convection terms in the compressible N-S equations. For getting high resolution 
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the diffusion analogy coefficient is modified with three above mentioned methods. The inci- 
dent shock angle 0 is 29 ° and free Mach number M~ is 2.9. The computed results are given 
in Fig.2. 
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Fig.1 Stream line pattern at different time in a period 
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S O L U T I O N  O F  T H R E E - D I M E N S I O N A L  N A V I E R - S T O K E S  E Q U A T I O N S  

U S I N G  A N  I M P L I C I T  G A U S S - S E I D E L  S C H E M E  

S. Yoon 

MCAT Institute, NASA Ames Research Center 

MS 258-1, Moffett Field, California 94035, U.S.A. 

I. Introduct ion 

Although unstructured grid methods have been used successfully in solving the 

Euler equations for complex geometries, structured zonal grid solvers still remain 

the most useful for the Navier-Stokes equations because of their natural advan- 
tages in dealing with the highly clustered meshes in the viscous boundary layers. 

Zonal structured grid methods not only handle reasonably complex geometries us- 

ing multiple blocks, but also offer a hybrid grid scheme to alleviate difficulties which 

unstructured grid methods have encountered. Recent developments in structured 

grid solvers have been focused on the efficiency as well as the accuracy since existing 

three-dimensional Navier-Stokes codes are not efficient enough to be used routinely 

for aerodynamic design. 

The author I has introduced an implicit algorithm based on a lower-upper 

factorization and symmetric Gauss-Seidel relaxation. The scheme has been used 

successfully in computing chemically reacting flows due in part to the algorithm's 

property which reduces the size of the left hand side matrix for nonequilibrium 
flows with finite rate chemistry. 2'3 More recently, a study 4 suggests that the three- 

dimensional extension of the method is one of the most efficient ways to solve 

the Navier-Stokes equations. Consequently, a new three-dimensional Navier-Stokes 

code named CENS3D was produced. CENS3D requires less computational work per 

iteration than most existing codes on a Cray YMP supercomputer and in addition 

converges reasonably fast. The performance of the code is demonstrated for a 

viscous transonic flow past an ONERA M6 wing. 

II. Numerica l  Methods  

Let t be time; £) the vector of conserved variables;/~,/~, and G the convective 

flux vectors; and/~, ,  Fv, and Gv the flux vectors for the viscous terms. Then the 

three-dimensional Navier-Stokes equations in generalized curvilinear coordinates 

((, 7/, ~) can be written as 
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o ~  + o~(~ - ~ )  + o , (P  - f , )  + 0~(~ - O~) = 0 (1) 

where the flux vectors are found in Ref. 4. 

An unfactored implicit scheme can be obtained from a nonlinear implicit 
scheme by linearizing the flux vectors about the previous time step and dropping 
terms of the second and higher order. 

[I + aAt(D~A + D,B + D~C)]50 = - A t R  

where R is the residual 

(2) 

/~ = D¢(/~ - / ~ )  + D.(/~ - / ~ )  + De(0 - 6~) (3) 

and I is the identity matrix. 5~) is the c o r r e c t i o n  (~n+ l  _ {~n, where n denotes the 

time level. D~, Dn, and De are difference operators that approximate 0~, 0,, and 
0~..4,/~, and C are the Jacobian matrices of the convective flux vectors. 

An efficient implicit scheme can be derived by combining the advantages of 
LU factorization and Gauss-Seidel relaxation. 

Here, 

(4) 

L = ± + ~ZXt(D~2+ + D ; f  + + D ~ 5  + - 2 -  - ~ -  - ~-)  

D = ± + ~ZXt(~+ - 2 -  + ~ +  - ~ -  + @+ - ~-)  

+^ ~+ 0+) V = I + c~At(D~-.4- + D +/~- + D~ C -  + -4+ + + 
(5) 

where D~-, D~-, and D~- are backward difference operators, while D +e, D +, and D~" 

are forward difference operators. 
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In the framework of the LU-SGS algorithm, a variety of schemes can be devel- 

oped by different choices of numerical dissipation models and Jacobian matrices of 

the flux vectors. Jacobian matrices leading to diagonal dominance are constructed 

so that  " + " matrices have nonnegative eigenvalues while " " matrices have 

nonpositive eigenvalues. For example, 

./~4- ~ 4- ^ - - 1  = T,A,  T; (6) 

where T~ and ~ 1  are similarity transformation matrices of the eigenvectors of .4. 

Another possibility is to construct Jacobian matrices of the flux vectors approxi- 

mately to yield diagonal dominance. 

/~.4- 1 ^ 
= ~[B 4- ,~(~)Z] 

,~+ = ~[~ 4- Z(O)Z] 

(7) 

where 

~(-~) = ,~ ,,,a~[I ~(~)  t] (s) 

for example. Here A(A) represent eigenvalues of the Jacobian matr ix A and n is a 

constant that  is greater than or equal to 1. Stability and convergence are controlled 

by adjusting n either manually or automatically as the flowfield develops. 

It is interesting to note that the need for block inversions along the diago- 

nals can be eliminated if we use the approximate Jacobian matrices of Eq. (7). 

Setting o~ = 1 and At  = oo yields a Newton-like iteration. Although a quadratic 

convergence of the Newton method cannot be achieved because of the approximate 

factorization, a linear convergence can be demonstrated.  The use of Newton-like 

iteration offers a practical advantage in that one does not have to find an optimal 

Courant number or time step to reduce the overall computer  time. 

The cell-centered finite-volume method 4 is augmented by a numerical dissipa- 

tion model with a minmod flux limiter. The  coefficients of the dissipative terms are 

the directionally scaled spectral radii of Jacobian matrices. 
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III. Results  

In order to demonstrate the performance of the CENS3D code, transonic flow 

calculations have been carried out for an ONERA M6 wing. A 289 x 50 x 44 C-H 

mesh (635,800 points) is used as a fine grid. The distance of the first grid point 

from the wing surface is 1.0 x 10 .5 times the chord length at the root section. The 

freestream conditions are at a Math number of 0.8395, Reynolds number of 1.5 x 

l0 T, and a 3.06 ° angle of attack. This is an unseparated flow ease. The algebraic 

turbulence model by Baldwin and Lomax is employed for mathematical closure of 

the Reynolds-averaged Navier-Stokes equations. The root-mean-squared residuals 

drop 3 orders of magnitude in about 380 iterations or 38 minutes of CPU time on 

the fine grid. In the present implementation, the implicit left hand side viscous 

terms are not included which decreases the computational work per iteration. To 

investigate the effect of this left hand side compromise on the convergence rate, a 

grid-convergence study has been performed using a 171 x 25 x 44 (188,100 points) 

coarse grid. Although the number of radial grid points to resolve the viscous bound- 

ary layer is doubled in the fine grid case, the fine grid convergence is slowed by only 

twenty percent. Fig. 1 and Fig. 2 show a good agreement between experimental 

data s and the pressure coefficients at 44% and 65% semi-span stations computed 

on the fine grid. This comparison validates the present code CENSaD. 

The CENS3D code requires only 9 #sec per grid-point per iteration for the 

thin-layer Navier-Stokes equations with an algebraic turbulence model on a single 

Cray YMP processor at the sustained rate of 175 Mflops. It is interesting to note 

that the LU-SGS implicit scheme requires less computational work per iteration 

than a Runge-Kutta explicit scheme. 

Conclusions 

Good performance of a three-dimensional Navier-Stokes solver CENS3D based 

on an implicit lower-upper Gauss-Seidel scheme is demonstrated for nonseparated 

transonic flow past a wing. In addition to its reasonabe convergence rate, the code 

requires very low computational time per iteration. The three-dimensional Navier- 

Stokes solution of a high Reynolds number flow using 636K grid points is obtained 

in 38 minutes. The computational results compare well with available experimental 

data. 
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TRANSONIC WING ANALYSIS AND DESIGN USING NAVIER-STOKES EQUATIONS 

N. J. Yu 

Boeing Commercial Airplane Group 

Seattle, Washington 

Introduction 

Recent advances in computational methods have made Navier-Stokes 

solvers practical and useful engineering tools for wing or wing-body 

analysis [I]. With improvements in numerical accuracy and advances in 

turbulence models [2-6], results obtained from Navier-Stokes codes 

have shown good test/theory correlations for a number of configura- 

tions at a range of flow conditions [7,8]. 

Although accurate and reliable analysis codes provide useful tools 

for airplane design, it would be even more valuable to have a design 

capability within the Navier-Stokes codes. There are a few design 

methods in the literature [9-13] that have been incorporated into 

Navier-Stokes codes to provide a design capability. However, applica- 

tions of these methods to 3-D wing design need further development. 

This paper presents recent developments and applications of a 

Navier-Stokes code [i] for transonic wing analysis and design. In the 

area of transonic wing analysis, the emphasis is focused on the capa- 

bility of separated flow simulation, where in transonic wing design, 

the main objective is to develop an efficient method for designing a 

wing with specified pressure distributions. Problems encountered in 

the airfoil design with flow separations are discussed in this paper. 

Navier-StokesAnalysis Code Development 

The Navier-Stokes algorithm used in the present study was 

developed by Vatsa and Wedan [i]. The basic method follows Jameson's 

finite volume approach [14]. The unsteady thin-layer Navier-Stokes 

equations are solved using a multistage Runge-Kutta time-stepping 

scheme. To speed up convergence, a V-cycle full multigrid method is 

implemented in the solver. 

Several different turbulence models were implemented in the code 

[1,7], including Baldwin-Lomax [2], Johnson-King [3], and Baldwin- 

Barth [5] models. Through a number of numerical experiments, it was 

found that the Johnson-King model provides good correlation with test 

data for a range of flow conditions, including flows with mild shock- 

induced and trailing edge separations. This model is used in all 

results presented in this paper. 

To solve the flowfield around a wing or wing-body configuration 

with viscous effects along the wing surface, a high-quality Navier- 
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Stokes grid is needed. The elliptic grid generation method explored 

earlier [15] has been proved effective in generating useful Navier- 

Stokes grids and is used in the present study. The grid spacing 

normal to the wing surface is of the order of 10 -7 to 10 -5 x/C, 

depending on the Reynolds number of the flow to be analyzed. As a 

general rule, the first grid spacing normal to the wall, in terms of 

the wall unit y+, should be of the order one so that the viscous 

effects can be realistically simulated. 
Computed results for a research wing at an off-design condition is 

shown in Figure i. The trailing edge region of the upper surface 

showed small separation, as can be seen from the surface streamline 

plot. The computed wing pressures correlated well with test data, 

including the trailing edge recovery region. The same code has also 

been used for the analysis of conventional wings, such as the ONERA 

wing M6 and the Boeing 747-200 wing. Results also correlated quite 

well with test data. 

Tra~L~ng e d g e  

- -  s~parat~o~ 

a. Upper surface streamlines 

i e  r - B t o  ~ e  s 

E t a  ----- 0 o 8 S  

b. Pressure distributions 

Fig. i. Test/theory comparisons for an advanced wing at off-design 

condition (flow separation at trailing edge) 

DeslgnMethod Development 
The design method explored in this paper uses an iterative 

approach, where the target pressures of the wing to be designed are 

compared with the analysis pressures of an initial input wing. The 

differences between target and analysis pressures are used to drive 

the geometry change of the wing through a streamline curvature method 

[16-17]. The updated geometry is then analyzed using the same Navier- 

Stokes solver. The process repeats until the final pressures match 

the target pressures within a prescribed tolerance. 

The design driver, developed by Campbell and Smith [12-13], 

relates pressure differences to geometry changes. Two different 

algorithms are used to determine the geometry changes required to 

produce the desired change in surface pressures, depending on the 

local Mach number of the flowfield. In subsonic regions, the change 

in surface curvature is related to the change in pressure through a 

surface curvature method, where in supersonic regions, the change in 

surface slope is related to the change in pressure based on the 

supersonic thin-airfoil theory. The change in curvature or slope is 

integrated along the streamwise direction to produce the geometry 
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correction. More details on the basic method are discussed in 

references 13 and 18. 

Several issues involving wing design need to be addressed, espe- 

cially the trailing edge closure and the smoothness of the designed 

geometry. During the iterative design process, the geometry correc- 

tion added to the original surface may result in a crossover or an 

open trailing edge wing section. To alleviate this problem, the newly 

designed geometry is rotated with respect to the leading edge point 

(or the first design point) so that the trailing edge returns to its 

original location. To ensure smoothness of the redesigned geometry, 

the wing surface coordinates are smoothed in both chordwise and 

spanwise directions after each design cycle. Typically, a third-order 

polynomial with a least square fit is used in the geometry smoothing 

process. 

To demonstrate this design concept, we used the pressure distri- 

butions of an ONERA wing M6 at Mach=0.84, ~=3.06 °, and Reynolds 

number=21.66 million per unit length (semispan), as target pressures. 

The input geometry was the same wing planform, with the NACA 0012 

airfoil section. Figure 2 compares the initial, final, and target 

design pressures at two span stations, and Figure 3 compares the 

corresponding geometries at the same stations for the final converged 

solution. The complete design process takes 28 iterative design 

cycles. Notice that both the target pressures and the target geometry 

were recovered accurately. In fact, at the 15th design cycle, the 
design solution was reasonably well converged. The last few design 

cycles primarily provided fine adjustments of the surface pressures 

and geometry in order to recover the targets accurately. 

The same design process has also been successfully applied to 2-D 

airfoil design. An interesting case is the design of an airfoil at a 

) 

a. Eta  = 0.25 

----: I~{t{aL 

¢ ¢ : Target 
: F~n,a~ 

b. Eta  = 0.75 

Fig. 2. Comparisons of initial, target, and final design pressures 

for a wing at M=0.84, ~=3.06 °, Re=21.66 million/semispan 

Targel; 

Fig. 3. Comparisons of initial, target, and final design geometries 

for a wing at M=0.84, ~=3.06 °, Re=21.66 million/semispan 
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flow condition with shock-induced separation. Here an RAE2822 airfoil 

at Mach=0.75, ~=2.81 °, and Re=6.2 million/C is used as the target. 

This is a well-known "case I0" solution, which shows a moderate 

amount of flow separation downstream of the shock (Figure 4). The 

NACA 0012 airfoil at the same flow conditions is used as the initial 

input. After 30 design cycles, the surface pressures approach the 

target pressures reasonably well, with a slight mismatch in shock 

location and in pressure level just aft of the shock. The geometry 

obtained from the design code shows a correspondingly good match to 

the target airfoil, with a slight bulge in the upper surface 

ordinates just aft of the maximum thickness location. Apparently in 

this case, the design method produces a geometry that encloses the 

separation bubble downstream of the shock, as one of the possible 

solutions. The present iterative design method does not guarantee 

recovering the target geometry if substantial flow separations are 

present in the analysis. 

Fig. 

a. Pressure distributions b. Geomet~ 

4. Airfoil design--RAE2822 at M=0.75, ~=2.81 °, Re=6.2 million/C 

Conclusions 

The thin-layer Navier-Stokes code can be used as an effective tool 

for simple wing or wing-body analysis. Results show good test/theory 

correlations for various configurations at a range of flow condi- 

tions. The simple nonequilibrium turbulence model of Johnson and King 

[3] provides improvements in solution quality for the Navier-Stokes 

analysis. Further developments in turbulence modeling are needed to 

simulate flow with substantial separations reliably and accurately. 

The design method using the direct iterative surface curvature 

approach explored by Campbell and Smith [12-13] has been extended to 

3-D wing design with prescribed surface pressures. Preliminary 

results are encouraging. Further developments of the design method to 

include additional geometry as well as aerodynamic constraints are 

needed to make the method a useful tool. 

The author would like to acknowledge Drs. H. C. Chen and W. H. Jou 

of The Boeing Company and Dr. R. L. Campbell of NASA Langley Research 

Center for many valuable discussions on design methods. 
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A SECOND ORDER METHOD FOR THE FINITE ELEMENT SOLUTION OF 
THE EULER A N D  NAVIER-STOKES EQUATIONS 

G.S. Baruzzi 1, W.G. Habashi 1 and M. Hafez 2 

1 Dep't of Mechanical Engineering, Concordia University, Montreal, Canada 
2 Dep't of Mechanical Engineering, University of California, Davis, California 

1. Introduction 

Most of the numerical methods for the solution of the inviscid Euler equations 
require the use of artificial viscosity. For the Navier-Stokes equations at high 
Reynolds numbers, the viscous terms are dominant only in a thin layer outside 
which the flow is nearly inviscid. An artificial viscosity is still needed for 
numerical stability in the nearly inviscid region but must  be eliminated in the 
viscous layer, otherwise the numerical solution is contaminated with excessive 
dissipation. For first order methods the amount of artificial viscosity necessary 
for stable solutions is proportional to the mesh size. Its detrimental effects, 
therefore, can be reduced by refining the mesh. A uniformly fine mesh 
throughout  the solution domain, however, is impractical and the grid must  
reflect the disparate characteristic lengths of the viscous and inviscid regions. 
The practical alternative is to adopt a higher order artificial viscosity. 

In finite elements, Hughes et al. [1] developed the I~etrov-Galerkin and 
streamline upwinding approaches and Morgan et al. [2] adopted a flux-corrected 
transport strategy. In previous work [3] the authors have presented a method for 
the solution of the Euler equations, based on an artificial viscosity introduced in 
the continuity and momentum equations in the form of Laplacians of the 
pressure and the velocity components, respectively. Equal order interpolation 
for pressure and velocity is allowed. The same technique has also been applied 
to subsonic Navier-Stokes flows [4]. 

To further enhance the quality of the finite element solutions for the Euler and 
Navier-Stokes equations, a higher order artificial viscosity is proposed. The 
artificial viscosity terms of the first order solver are balanced with correction 
terms obtained from the governing equations. The balancing terms are evaluated 
using a standard Galerkin method and are lagged, hence the Jacobian matrix is 
unaltered by the modifications. The residual, however, is of higher order  
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accuracy and the solution is not contaminated with the effects of the excessive 
viscosity usually needed for numerical stability of the first order method. 

2. Second Order Scheme 

To demonstrate the second order scheme, the modified governing equations 
of viscous, steady compressible flow can be written as: 

~. ( ~ )  + ~,- ~. ~-~,[~'~-~,/~, + ~ × o11-- o 
n.= r p+,V*V 

T - l p  2 
II (T_+llO°k)(T..T_1312 

~-. =t 7 ~  )fT.; 
v . , :  I [ - Z  v(.v. ~)+ v × , (v  × ~)+ 2 (v . ,v /~ l  

~eL 3 J 

(la) 

(lb) 

(lc) 

(ld) 

For convenience, the assumption of constant total enthalpy is used instead of 
the full energy equation. This approximation is acceptable in the transonic flow 
regime. In two dimensions the system reduces to three coupled equations in 
terms of the variables {u,v,p}, where the density in Eqs. (la) and (lb) is replaced 
using Eq. (lc). 

The Laplacian of pressure in Eq. (la) is balanced by an additional term that is 
a function of the velocity components and their derivatives. This term is 
obtained by taking the divergence of the momentum equations, as follows: 

(2) 

where, in Cartesian coordinates: 

The artificial term of Eq. (la) does not vanish identically, even in the steady- 
state when the discrete momentum equations are satisfied, since the divergence 
of the momen tum equations is not necessarily zero in the discrete sense. 
Nevertheless, conservation of mass improves at least an order of magnitude over 
the first order method. 

For the momentum equations the Laplacians of the velocity components are 
balanced according to the following vector identity: 
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+,, , , - , , .  x,,,)]_ o (3) 

where s = v • ff and co = v x ft. The artificial viscosity coefficient el is a constant 
and c2 vanishes in the shock region. The correction terms gl,  g2, s and co are 
evaluated at the nodes in a standard Galerkin way. For s, for example: 

j'.l" o (4) 

The finite element discretization is based on isoparametric bilinear elements. 
The standard Galerkin weighted residual method in weak form is applied to each 
equation and the system is linearized by Newton's method. For the Euler and 
Navier-Stokes equations proper boundary  conditions are imposed, in genuine 
finite element style, as demonstrated in previous work [3,4]. At each iteration, a 
fully coupled, sparse linear algebraic system of the form [J] {AU} = - {Res}, where 
AU = {Au,Av,Ap} and {Res} is the residual, is solved by a direct solver. The added 
artificial viscosity balancing terms are lagged through the iteration, hence the 
Jacobian matrix [Y] is unaltered with respect to the first order approach. The 
residual, however, attains higher order accuracy. 

3. Numerical Results 

An inviscid shock reflection problem is considered: at the inlet Mach=2 and 
the upper domain boundary conditions are set to produce a 40 ° incident shock. 
No outflow boundary  conditions are imposed. The Mach number contours for 
the second order method are shown in Fig. la  and the Mach number distribution 
at the midsection of the channel is shown in Fig. lb. 

The second case is inviscid flow around a NACA0012 at Mach=0.8 and 
(z=1.25 °. The Mach number contours for the second order method are shown in 
Fig. 2a and the surface Mach number is compared to the results of Pulliam and 
Barton [5] in Fig. 2b. 

The last case is viscous compressible flow around a NACA0012 at Mach=0.8 
and Re=500 at ~=10 °. Fig. 3a shows the Mach number  contours obtained with 
the second order scheme and Fig. 3b shows the surface Cp distribution compared 
to the results of Hollanders and Ravalason [6]. 
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IMPLEMENTATION OF CELL-VERTEX SCHEMES ON A MASSIVELY PARALLEL 

COMPUTER 1 

J.J. Chattot 

University of California Davis 

Davis, California 95616, U.S.A. 

1 . In t roduct ion  
Cell-vertex schemes are particularly well suited for computation using domain 

decomposition on a massively parallel computer, since they have a compact stencil, each 

cell being used as control volume for the conservation laws, and a minimum of 

information needs to be exchanged among the subdomains. 

A cell-vertex or "box" scheme was introduced initially by Keller in 1970 [1], for 

the discretization of the boundary-layer equations. For first order systems of partial 

differential equations it seems natural to discretize the first derivatives using a two- 

point scheme in 1-D and a four-point scheme on quadrilaterals in 2-D. This allows the 

time derivatives to be evaluated at the center of the cell. The question then arises as to 

how the time derivatives (at the cell center) is to be distributed among the nodes (at the 

corner of each cell). For the quasi one-dimensional Euler equations it has been shown 

that the time derivatives in the "box" [i-l,i] can be transferred to the end points i-1 or 

i, depending on the characteristic directions, in a way which is consistent with the 

physical properties of the flow. Results were reported in [2] for various test cases, 

including the shock tube problem and the flow in a slender nozzle. 

Extension to 2-D has been investigated using Ni's version of Lax-Wendroff scheme 

[3], and developing a new, characteristic based scheme [4]. Both approaches have been 

applied to a 2-D linear hyperbolic model problem, governing a low speed flow past 

slender profiles. It has been shown that Ni's scheme is a box scheme. Ni's "distribution 

formulae" distribute the contributions of the derivatives from the center of the cell to 

the nodes, taking into account consistency and accuracy requirements (second order 

scheme). The characteristic based scheme makes use of characteristic information to 

distribute the changes from the cell center to the nodes. 

The special feature of a box scheme is that the steady conservation equations are 

1Funds for the support of this study have been allocated by the NASA-Ames Research 

Center, Moffett Field, California, under Interchange No: NCA2-627 
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satisfied exactly, in the discrete sense, in each cell. This is believed to be a stronger 

enforcement of the conservation laws than with non-box-type schemes, for which the 

equations are satisfied on staggered control volumes requiring interpolation of the flow 

variables. 
Results were compared with the exact solution for the flow past a wavy wall and the 

flow past a parabolic profile at zero incidence, using uniform meshes. Interestingly, the 
two scheme exhibit second order accuracy as expected for the first problem, but only 
first order accuracy for the latter, due to a weak singularity at the leading and trailing 

edges, fig.1. 
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figure 1-Error norms vs. mesh size, for the linear hyperbolic problem 

2.Comparison of two schemes for the Euler Equations 

The Ringleb flow [5] is one of the few exact solutions of the Euler Equations, which 
can be found in a report by G. Chiocchia [6]. Nrs scheme is compared to a version of 

Lax-Wendroff scheme due to Lerat [7]. The computational features of both schemes are 

presented below, as implemented by the author in the codes. 

Cell and control volume are defined on the sketch below. The conservation equations 

are written in compact form, with the usual notation, as: 

w,t+ f,x + g,y--0 

In Nrs scheme, the time derivatives, w,t=-(f,x+g,y ), are evaluated at the cell 

centers, say G, using a cell-vertex formula for the divergence (linear variation along 
the edges). Then these are distributed to the nodes, say A, in proportion to the area ratio 

a l / (a l+a2+a3+a4).  The second order contributions, w,tt=-(f,w.W,t),x-(g,w.W,t),y, 
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are evaluated on the control volume using the same formula. 

• " ~ +  I ,J + cell 

(fc- f A)(YD" YB )- (fD -f B)(Yc- f A ) af 
1, j  

3x - (Xc_ XA)(y D. y~_ (X D_ XB)(y c_ yA) 

I ', / '"  I control / v°'um  

In Lerars scheme, the time derivatives, w,t, are evaluated at the mid-edge, say I, 

using a cell vertex formula on the auxiliary control volume AFBG, the values at F and G 

being averaged from the cells. Then these are sent to the nodes, say A, in proportion to 
the area al/Area, where Area is the area of the control volume. The second order 

contributions, w,t t, are evaluated using the control volume and a mid-edge formula• 

control 
volume ~ cel I 

~ ~ _  t"~auxiliary 
\ H _ _ - \J -~-  - ~ ~  contr°l v°lume 

.q a0 I x lel+l x JeJ+l x KOK+I x LeL 
" ' J  a~ = IxlXl+lxjXj+lxKXK-~~LX--- ~ 

1_-- - ' ~  Ixn=Y~-YF ' X'--~-~ (XF+XG) 

For both schemes, following Ni's idea, these expressions are obtained by summing up 
contributions computed as the domain is swept, on a cell by cell basis. Lerat's scheme is 

not a box scheme, because of the averaging which is done at the cell centers. This may be 

the reason for the more dissipative properties of this scheme. 
Comparisons, using Ringleb flow, indicate that both schemes have the same order of 

accuracy (close to 2) as the mesh is refined, fig.2. However, the level of error is 

somewhat higher in Lerat's scheme, probably in relation to the dissipation built into the 
scheme. Another feature that made these schemes differ, is the stability requirement to 

run the two explicit versions of Lax-Wendroff scheme: It has been found, from the test 
case, that Ni's scheme could be run with a time step which is twice that needed by Lerat's 
version to maintain stability of the computation. 

The use of the cell-vertex and mid-edge formulae allow to solve the cartesian form of 
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the Euler equations on a curvilinear mesh system, without the need to introduce a 

transformation and metric coefficients. This has been found to be extremely flexible. 

Only nodal coordinates are needed. 

1 
-1 Ni's scheme Lerat's scheme 

log Erl 
log Er2 

i log Eul log Eu2 
log Evl 

- log Ev2 
' log Eel 

log Ee2 
log dx 

-1.5 -1'.0 -0~5 0:0 -0.~ -1'.0 -0'.5 O~O 0.5 

figure 2-Error norms vs. mesh size, for the Euler test case 

3 . Implementat ion  on the iPSC/860 

The Intel iPSC/860 'hypercube' is a massively parallel computer. Each processor 

carries its own program. This is a MIMD architecture. The machine installed at 

NASA/Ames has 128 processors (nodes), each of which has 8 Mbytes of memory and an 

Intel i860 chip capable of 80 Mflops ideally. The processors are interconnected using a 

hypercube network topology. Taken as a whole, this machine has a peak speed of 10 

Gflops and a memory of 128 Mwords (64 bits) which puts it (potentially) among the 

largest and fastest computers in the world. 

The box scheme described above was used to solve the Euler test case. The finest mesh 

used was 1281x81. The problem was divided among the processors geographically. The 

domain was divided into regions having equal number of points. Each region was assigned 

to a single processor. Communication between neighboring regions was required once per 

iteration. This was not found to be a significant cost. The flow solution was obtained using 
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1,4,16,64 and 128 processors. As shown in fig. 3, a nearly linear speedup was obtained 

when more processors were used. The slight degradation is due to communication costs. 

These could be further reduced by using asynchronous I/O or by choosing a larger 

problem. With the latest compiler the speed has been evaluated at 233 Mflops. 

300 

3 0 0 ,  

_o 

100 • ~ ps 

Theoret ical  

5 0  1 0 0  

N processors 
1 50  

figure 3-Speed-up (MFIops) vs. number of processors of the iPSC/860 
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A C O N S I S T E N T  C E L L  V E R T E X  F I N I T E  V O L U M E  M E T H O D  F O R  
T H E  C O M P R E S S I B L E  N A V I E R - S T O K E S  E Q U A T I O N S  

P.I. Crumpton ,  J.A. Mackenzie and K.W.  Morton  

ICFD, Oxford University Computing Laboratory, 11 Keble Road, Oxford 

1 I n t r o d u c t i o n  

Two objectives guided the development of the cell vertex algorithm which is described 
here and in more detail in [1]: firstly, the algorithm should give a practical means of 
calculating external aerodynamical flows, both laminar and turbulent,  on a multiblock 
mesh in two and three dimensions; secondly, there should be a sufficient mathematical 
basis to the method to yield efficient a posteriori error criteria to be used in mesh 
adaption, as well as strict a priori error bounds for some relevant model problems. 

We have so far had to achieve these aims by means of a compromise. The algorithm 
is built on the definition of a cell residual R~(W) ,  in which the inviscid and viscous 
fluxes are consistently approximated on the boundaries of a quadrilateral cell f ~  
of the primary mesh. The error analysis is based on cases where W can be found 
such that  R~(W)  = 0 Va. On the other hand, in order to solve the Navier-Stokes 
equations we have had to introduce nodal residuals N j ( W ) ,  obtained by combining 
the cell residuals for the cells with common node xj; W is then determined by setting 
N j ( W )  -- 0 k/j. In one dimensional problems and simple two-dimensional problems, 
R~ and Nj  can be defined so that  they are driven to zero together - -  see [7], [8], [3]; 
but this is not generally true and hence leads to the compromise. 

In the present paper we report on progress in the overall aim of ensuring that 
N j ( W )  = 0 Vj ==~ R~(W)  -- 0 Va for the Navier-Stokes equations. Plots of the 
flux budget balance for each type of residual are used to show how the design of the 
artificial viscosity terms and the distribution matrices which are used in the definition 
of Nj  affect the attainment of this goal, see Fig.1. Our view is that artificial viscosity 
is an overused expedient, which we aim to relegate to a minor rSle. 

2 T h e  b a s i c  a l g o r i t h m  a n d  s o m e  v a r i a n t s  

In the cell vertex algorithm, the conserved unknown variables W j  are associated with 
the vertices xj  of the primary mesh, which we take to be a body-fitted multiblock 
mesh, composed of quadrilaterals in 2D and hexadedra in 3D. The equations are 
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written in conservation law form, in 2D cartesian co-ordinates 

Of(w, Vw) Og(w,Vw) _ O. (1) 
div(f, g) -- Ox + Oy 

Integration of (1) over a quadrilateral cell F~ of measure V~ (with vertices Xl, x2, x3, x4, 
ordered anticlockwise), and application of Gauss' theorem, gives 

1 ~ d i v ( f , g ) d a =  1 J~0 f d y - g d x ;  (2) 

and approximation of the edge integrals by the trapezoidal rule yields the cell residual, 

R . ( w )  : =  1 - F 3 ) ( y 2  - y4)  + ( r 2  - r 4 ) ( y 3  - y l )  

-(G1 - -  G3)(x2 - -  X4) - -  (G2 - -  G4)(x3 - -  Xl)]. ( 3 )  

Here we have used the notation w for the exact solution of (1) and W for the approx- 
imation, with Fj  = f (W,  VW)  evaluated at the vertex xj. 

Note here the distinctive feature of this scheme: V W  is recovered at each vertex 
from the approximation over the cells that have the vertex in common; hence all the 
inviscid and viscous flux terms, for a laminar or turbulent flow model, are approxi- 
mated in a consistent manner at each vertex of the mesh. The recovery of (VW)j  
can be achieved in various ways. In the simplest technique, which is used in the basic 
algorithm, OW/Ox is written as div(W, 0) and integrated over a subsidiary cell whose 
boundary is formed by primary cell diagonals enclosing the vertex xj. Then the inte- 
grals are approximated as in (2) and (3). Recovery at boundary nodes is accomplished 
by extrapolation from the interior. 

On the mesh away from inter-block boundaries, R~(W) thus involves twelve mesh 
points, the four that comprise the vertices of Q~ plus the further eight vertices of 
the cells which have edges in common with F~. For the most part, Qne would then 
like to determine W by setting R~(W) = 0 for every primary cell ~ of the mesh 
and satisfying the boundary conditions. However, without a direct association of 
the unknowns Wj  at the vertices xj with the residual equations at the cells Q~ this 
may not be possible; also, in the neighbourhood of shocks it may not be desirable 
without shock fitting; and, in any case, one needs an iterative procedure which uses 
discrepancies in the R~ to compute nodal updates oqVj. 

Hence in the basic algorithm the nodal residuals N j (W)  are formed at each vertex 
by using distribution matrices to combine the surrounding cell residuals; artificial 
viscosity (AVIS) terms may also be added at this stage to give 

:= E(~)V~(D~,jR~ + A~,/) 
N j (W)  E( . )  V~ (4) 

The distribution matrices are based on a generalised Lax-Wendroff procedure, using 
the flux Jacohian matrices for the inviscid fluxes only, A := 0fX/0w, B := 0gZ/0w. 
Integrating the second order update term div(AR, BR)  over the same subsidiary cell 
used in recovering VW,  we obtain for example 

At~ 
D~,I := I - / g o a l ( Y 4  - -  y2)A~ - (x4 - -  x2)Bc~], (5) v ~  
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where uc is a global cell CFL number and At~ is the maximum local timestep for 
stability of the standard Lax-Wendroff scheme. Then the nodal update  is given by 

W} ~+' = W} ~ - yNAtjNj(W ~) (6) 

where v~v is a global nodal CFL number and Atj  is the minimum of the At~ for the 
surrounding cells. Convergence requires 

l /N ~ 1] C 12Nbl O < 1 (7) 

and is accelerated by a FAS multigrid procedure. Boundary conditions are applied in a 
standard way, by performing a Lax-Wendroff update using dummy exterior cells with 
zero residuals and then imposing either solid body or characteristic far-field boundary 
conditions. 

Clearly at convergence we have N j ( W )  = 0, but what happens to the cell residuals 
R s ( W )  of our target scheme? In [7] a detailed study has been made of the situation 
in one dimension. For the Euler equations the optimal distribution matrix is then 
given by 

D.~ := I q- sign(As), (8) 

where A~ = LglAsLs diagonalises As and sign(As) = L~ 1 sign(As)L~. That  is, 
a matrix CFL parameter is used so that  each residual component is fully upwinded. 
This automatically takes care of counting problems, ensuring that the number of equa- 
tions and boundary conditions matches the number of unknowns so that in general 
R s ( W )  = 0. Exceptions occur at shocks and sonic points; at a shock two residual 
components, corresponding to the switching characteristic, are summed to maintain 
conservation and give a very local error without the use of artificial viscosity; but a 
cell containing a sonic point should ideally be split to give two residuals, though the 
use of fourth order AVIS can be almost as effective. This study goes on to show how 
the choice of uc > 1 in (5) can approximate the optimal choice (8), what the r61e 
of the AVIS is at sonic points and shock points and how the efficiency of the update 
procedure (6) can be greatly improved. 

In two dimensions the only problem that has been studied in the same detail 
is the scalar convection-diffusion problem. In [2] it is shown how extraordinarily 
good results are obtained over the whole range of mesh P@clet numbers, and with 
no adjustable AVIS parameters, by setting R s ( W )  -- 0 except at outflow Dirichlet 
boundaries. These are just the nodes where extra boundary conditions are imposed 
when diffusion is added to convection; and, as with the change from the Euler equa- 
tions to the Navier-Stokes equations, the use of a conventional Lax-Wendroff iteration 
does not lead to the uncoupling and hence the setting to zero of the cell residuals. 
However, if the distribution matrices like (5) are replaced by products of those like 
(8), that is in the scalar case 

D~ ± := [1 + sign(as)l[1 -1- sign(bs)], (9) 

we obtain the same results as in [2] and set all the selected cell residuals to zero. 
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3 R e c e n t  d e v e l o p m e n t s  and numer ica l  s tudies  

The results presented in [1] and [4] for the Navier-Stokes equations were obtained with 
the basic cell vertex algorithm, that  is, using distribution matrices and updates based 
on the two scalar CFL numbers uc and ~'N. This is now seen to be quite restrictive: 
if the effective u¢ for each component is to be larger than unity, in order to obtain 
a smooth decay of errors away from key flow features, the scalar uc has to be very 
large and hence, from (7), /]N has to be very small. Even with multigrid the resulting 
slow convergence cannot be tolerated. Hence second order and fourth order AVIS is 
brought in to replace the use o[ uc > >  aN. The studies presented here aim to show 
how the deleterious effects of this compromise can be minimised. 

Loss of accuracy, especially with entropy variables, is particularly serious if the 
second order AVIS is applied too freely. It is needed by the cell vertex scheme only 
near shocks. Hence we have used the techniques of shock detection (see [5], [6], [4]) to 
eliminate its introduction in regions of high gradients, such as near the leading edge, 
where it is not needed; and we have scaled the fourth order AVIS by the local Mach 
number. The benefits are shown in Fig.2 for a transonic turbulent flow computa- 
tion. Moreover, AVIS is needed only for the residual component corresponding to the 
switching characteristic; the result of using a more discriminating matrix-based AVIS 
is shown in Fig.3, which when coupled with the shock detection procedure ensures 
that the computational overhead is minimal. 
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Figure 1: Equation budget of x-momentum for flow over a flat plate with M~o = 0.5 
and Re = 5000: (a) flux balance of nodal residual and (b) flux balance of the cell 
residual; [] inviscid, O viscous and A artificial dissipation. 

Switch "°* Skin Friction 

Fig 2 (a) 

%..-.... __..~ . . . . . . . .  .............. ..-. 

i ~  Fig 2 (b) 

• . . . . . . . . . . .  
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(a) region of shock and (b) improvement of skin friction coefficient in shocked region; 
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Figure 3: Comparison of (a) entropy deviation and (b) pressure coefficient for Euler 
flow over a NACA0012 aerofoil Moo = 0.85 and a = 1°: + matrix based capturing 
AVIS; × scalar AVIS. 
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R~4ARK ON NUMERICAL SI~EKATION OF 2D UNSTEADY ~RANSCRIC 

J.Fo~t, T.Hftlek, K.Kozel, M.Vav~incov~ 

TUPrague 

The work deals with three numerical methods solving the system of 

Euler or Navier-Stokes equations. Mac Cormack cell centered and Ni cell 

vertex finite volume schemes were used for simulation of inviscid unste- 

ady solution of transonic flows through a 2D cascade. Unsteady motion is 

caused by a periodic change of downstream pressure. The Runge-Kuttamul- 

tistage cell centered finite volume scheme has been used for viscous la- 

minar steady and unsteady transonic flows over NACA 0012. 

I. Numerical solution 

The system of Euler equations in conservative form; 

%+~x+%=0 (i~ 

w = col II ?, 9u, ~v, e II, ~ = col II eu, ~u 2 + p, ~uv, (~p)pll, 

G = col II ~v, ~uv, ~v 2 + p, (e+p)v If, P = (6- i)[e - 0,5 ~(u2+v2)~j M 

is rewritten in integral form 

%-~ dxdy + F dy - G dx = 0 (2) 

and used to find a new value of numerical solution in (n+l)-time level 

i j  = l j  - ~-~,~ '%~i ~ 

W. is mean value of W in quadrilateral cell D (cell centered scheme) ~.j 1 j  
or value of W in a vert¢× of Di6 (cell vertex form); #,_ ~ are some appro- 

J 

ximations of F, G in Di~.Mac Cormack and Ni scheme are considered as same 
J 

approximation of (3), see [1],[2]. Relation (3) is also possible to re- 

write in residual form 

~ ,u,v,e are density, velocity components, total energy per unit volume; 

p is pressure 
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W~.t I :W~,. - At . Rez W/}.. (4) 
13 13 13 

that defines steady re&idual Rez W~.. in cell D.. after n-iterations steps. 
13 z3 

The system of Navier-Stokes equations in conservative form 

wt + ~x + % : k (R x + sy) 
Re 

R=col IIo,~, c, uZ-~+v ~ xy + k - l - x l l  

s:col IIO,~xy, '~, ~ + v ~  +kT~ll. ~) 

(5) 

In the case of Navier-Stokes equations the following relations corres- 

pond (2) 

~--~ Wdxdy + (F - 1 1 ~R) dy - (G-~S)dx : 0 (6) 

and when one can approximate line integral along boundal~y ~D.. of each 
13 

computational cell~e have the system of ordinary differential equations 

n 1 d 1 = ~ lj WtJij ~ij ~DD%" 

that is solved by multistage Runge-Kutta method 

~.. : w!o) 
z3 ij 

_ ~w(k-1) 
W! k)= W~. ~k ,~ At. • • (k : 1 ..... m) (8) 
1J lj 13 ' 

~tl: w! n) 
z3 zj 

1 =l We used two method: a) e< 1 = 5 2 = ~ , ~3 

b) a I =%~2 = 0,6 ; ~3 = 1 . 

The first method showed the better numerical results [3]. Artificial di- 

sippation terms w~re used in each method. The forms of the terms are publi- 

shed in [1],[2],[3],[4]. The same is true for boundary conditions used in 

all computed cases. 

II. Unsteady solution through SE 1050 cascade 

Consider unsteady solution caused by known change P2 

riodical function of time t: 

= P2(t) as ape- 

M) T is tenloeratLlre and ~xx:(~ u x - ~ . ~ Vy 

xy = ~ (~ + v x) , Re is Reynolds number. 

2 -~-u) , 
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P2 = (kl + k2sin (k3t))Pl ' (9) 

t = ta~/¢, t is physical time, a~ is upstream sonic velocity, c is lenth 

of chord of the profile. 

We considered the following cases: 
1 

a) k I = 0.6, k 2 = 0.15, k 3 = 7' 1,3,6,9 - influence of frequency 

b) k I = 0.6, k 2 = 0.15, k 3 = 1 and three different possibilies for a lo- 

cation of BB" (see fig.l) ~) volu~e F2BB'F 2 given by steady state solu- 

tion 

B) BB" is moved to the right (cc~pared to case b ~ ) 

~) BB" is moved to the left (~ed to case b~). 

In all cases mentioned here we computed results with ~t given by stabili- 

ty limitation and also with ~t/2 and we achieved the same numerical re- 

sults. Fig 2 shows steady state solution (fig 2a), unsteady solution for 

t = 3,66 and volume given by (b/) - 2b or t = 3,66 and volume given by 

(bB) - 2c and the same frequency (k3=l). Fig. 3 shows results of unsteady 

solution for t = 3,66, volume (ba) and k3=l (fig 3a) or k3=3 (fig.3b). 

We also investigated time period T needed to achieve the periodic mo- 

tion. Fig.4 shows ccmparison of cc~puted function ~2(M2) for PZ = P2 (t) 

a) near initial conditions and b) in one period during periodical motion 

for the case of Mac Cormack scheme using three considered downstream vo- 

lumes b~), bB), b~. 

Conclusion: a) value of downstream volume influenced the qualitative pro- 

perties of unsteady flowfield, not time needed for stabi- 

lized periodic motion 

b) frequency dominantly influenced time needed to stabilize 

periodic motion. 

The same results as by Mac Cormack scheme were achieved by Ni scheme. 

III. Unst_~gay viscous solution over NA(3% 0012 

Workshop 87 showed that case M~=0,85, ~= 0 °, Re = 104 is regi- 

me wh~_re stable steady solution should not exist. We wanted to test our 

method and simulate flow behavior in this case. In the first case symme- 

tric initial condi,tions we~ used. We observed symmetric behavior of the 

results but not steady. The $~me small disturbance in initial velocity 

near trail~ing edge (order of magnitude - 2) was considered and we can 

expect periodical behavior near trail.{ng edge and in a wake. When we con- 

tinue with first case (syraaetric initial conditions), for long-run ~u- 

tation (20 000 - 25 000 time steps) the round-off errors effect was strong 
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to break symmetry of the flow. Fig. 5 shows isomachlines of the flow with 

M~= 0,85, ~= 0 °, Re = 104 (case 2) and nonsy~netric initial conditions 

after 5100 time steps and details near trail~ing edge. Fig.6 shows iso- 

machlines of the same flowfield with symmetric initial conditions after 

20t 500 time steps. 
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D E V E L O P M E N T  A N D  A P P L I C A T I O N S  OF A 3D C O M P R E S S I B L E  N A V I E R -  
S T O K E S  S O L V E R  

H. Kuerten,  B. Geurts,  J. van der Burg, B. Vreman,  P. Zandbergen 

Department of Applied Mathematics, University of Twente, 
P.O. Box 217, 7500 AE Enschede, The Netherlands 

1 I n t r o d u c t i o n  

As a part of the Dutch ISNaS project our group and NLR jointly develop a flow solver 
for compressible, turbulent flow. This flow solver is especially aimed at applications on the 
industrial level: the nm]ti-element airfoil and wing/body combination, both at transonic flow 
conditions. The flow solver is based on the Reynolds-averaged Navier-Stokes equations, in 
which presently the algebraic Baldwin-Lomax turbulence model is adopted. In reference [1] 
the first results, for laminar and turbulent flow around ~ single airfoil and over a finite flat 
plate have been shown. In the present paper recent developments in the solver are discussed. 

In section 2 the numerical method used in the ISNaS solver is briefly described. Section 
3 discusses the role of the numerical, or artificial dissipation in relation to the physical 
dissipation. In section 4 numerical aspects of the extension of the monoblock solver to a 
multiblock solver are described. The numerical method used in the ISNaS solver serves as a 
basis for many CFD programs used in our group. These programs are not only intended for 
the tw o applications mentioned above, but also for more fundamental studies of turbulence 
(with the help of large eddy simulation (LES) and direct numerical simulation (DNS)) and 
for the simulation of viscous water waves. In section 5 of this paper the use of the numerical 
method in large eddy simulation is discussed. 

2 N u m e r i c a l  M e t h o d  

The formulation of the numerical method starts from the integral formulation of the un- 
steady Reynolds-averaged Navier-Stokes equations, in which the densities of the conserved 
quantities are used as dependent variables. This integral formulation leads in a natural  
way to a finite vohlne approach in physical space, preserving the conservation property. A 
cell-vertex method with overlapping control vohmes is used, since it remains accurate in 
the neighbourhood of grid distortions, which are unavoidable in the relevant applications. 
In figure 1 the control volumes used for the convective and viscous fluxes are sketched. 

For the spatial discretization central differencing is applied with additional second- and 
fourth order nonlinear artificial dissipation. The formulation of the artificial dissipation is 
based on the work of Jameson [2], and is described in more detail in the next section. At 
a solid surface the velocity components are set equal to zero, while the density and energy 
density are obtained by solving their conservation equations, assuming an adiabatic wall. 
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Figure h Control volmnes used for the convective terms (a) and viscous terms (b) 

The t reatment  of the far-field boundaries is based on approximate Riemann invariants, with 
the optional inclusion of a circulation correction [3]. 

The system of ordinary differential equations which results from the spatial discretization 
is integrated in time with a time-explicit multistage Runge-Kutta method, where local time 
stepping is used. The calculation time can drastically be reduced by the use of a multigrid 
technique and implicit residual averaging. Both for two-dimensional turbulent flow around 
an airfoil and three-dimensional turbulent flow around a wing the gain in calculation time, 
using these acceleration techniques is of the order of a factor of 10. 

For calculations on smooth grids instead of the cell-vertex method, sketched in figure 1, 
a vertex-based method can be used as an alternative. This method differs in the calculation 
of the convective fluxes, for which the same control volume is used as for the viscous fluxes. 
This and the fact that  the control volmne on which the artificiM dissipation method is based 
is the same, increase the consistency of the method. 

3 Artificial Dissipation 

In refs. [1], [4] it has been shown that  the numerical method described in the previous 
section captures the physics accurately for subsonic, laminar flow over a flat plate. For 
transonic, turbulent flow at high Reynolds nmnber, however, two disadvantages of the usual 
formulation of artificial dissipation [2], [5] become apparent.  In the first place, shock waves 
are not accurately captured, and in the second place, the artificial dissipation in the bound- 
ary layer is rather high, leading to too high drag coefficients. In this section it is shown that  
these drawbacks can be met by several modifications in the formulation. 

After spatial discretization the Navier-Stokes equations can schematically be written as 
dw/dt = fc + f ,  + f , ,  where w is the vector of dependent variables in all grid points, fc is 
the convectiv e flux, f .  the viscous flux and f ,  the artificial dissipation. The la t ter  consists 
of contributions from every spatial direction, each of which has the form d~+l/2 - di_l/2, 
where 

(2) ~(4) A 3  , ] 
di+l/2 = S i + 1 / 2 [ ~ i + l / 2 A i + 1 / 2 w  -- Ci+l/2~..xi+l/2w ]. 

Here, S i + l / 2  is a scaling factor, e}+)/2 and e~;)/2 are functions of a shock sensor, and A~+l/2 

and A~+l/2 are first and third order difference operators. 
An easy way to reduce the artificial dissipation in the boundary layer, where the viscous 

dissipation should be donfinant, is a nmltiplication of S~+l/2 with a function of the local 
Mach number. Application of this scaling in the direction normal to a solid wall with a 
linear function leads to a significant reduction of the drag coefficient. 

For two-dimensional calculations on meshes with grid cells of high aspect ratio tile scaling 
factor S~+1/2 in the /-direction is usually taken as S~ = [1 + (,~j/,~)2/a]A~, where ,~i is the 
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maximum eigenvalue of the flux Jacobian matr ix in the /-direction [5]. The term between 
the brackets increases the artificial dissipation in the streamwise direction in the boundary 
layer. It appears that  in the vertex-b~sed discretization S; = ~ can be chosen, at the cost 
of a small reduction in multigrid efficiency. However, the decrease of artificial dissipation 
leads to a bet ter  c~ption of the physical phenomena in the solution, which would otherwise 
require a finer grid. 

Shock waves can be captured more accurately, if the first order difference terms in 
the artificial dissipation, which are triggered by a shock sensor, are replaced by upwind 
differences [6]. This approach works both for inviscid and turbulent, viscous flow problems 
(see figure 2). 

4 Numerica l  Aspects  of Mult iblock Solver 

For the multi-element airfoil application a multiblock solver will be constructed. The total  
computationM domain will be divided into blocks in such a way that  in each block a struc- 
tured, boundary-conforming grid can be adopted. This block structure opens the possibility 
to solve the Euler equations in those blocks which are situated in the 'outer '  regions of the 
flow, and hence save calculation time. The numerical aspects of the multiblock solver have 
been investigated, using a nmltiblock structure around a single airfoil [7]. 

To this end each of the blocks is taken out of the total  domain separately and 'dressed' 
with two rows of dmnmy grid points. The blocks can be updated over one or more time 
steps independently, whilst keeping the variables in the dmnmy grid points fl'ozen. After 
each block has been treated in this way the variables at the block interfaces are averaged. 

It appears that  the steady-state solution and convergence behaviour are unchanged, 
irrespective of the number of blocks and location of the interfaces, if the nmnber of time 
steps over which the dummy variables are kept fl'ozen is not too large [7]. Further, the 
solution is unchanged, if outside the boundary layer the Euler equations are solved instead 
of the Navier-Stokes equations (see figure 3), even if the grid is distorted near the interface. 

5 Large Eddy Simulat ion 

Especially for complex flows, with large separation regions and shock-boundary layer interac- 
tion, the results of flow simulation based on the Reynolds-averaged Navier-Stokes equations 
inadequately describe related physical experiments. This is mainly caused by the turbulence 
model. Information on improvements of turbulence models can be obtained through com- 
parison with results from large eddy simulations of flow in simpler geometries. It has been 
shown that  large eddy sinmlations of compressible flow are possible within a finite-volmne 
approach, if the discretizations of the convective and viscous fluxes are performed on the 
same control volume [8]. If the Simpson rule is used for the integration of both fluxes, the 
theoretically expected velocity correlation spectrum is obtained in the case of homogeneous, 
isotropic, decaying turbulence in a 3D box. With the cell-vertex method direct nmnerical 
simulations of turbulent flow in a compressible mixing layer have been performed. The 
pMring of vortices and the correlation between pressure and vorticity are in agreement with 
literature. 
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Figure 2: Pressure coefficient on the airfoil for inviscid flow around a NACA0012 profile 
at M ~  = 0.8 and c~ = 1.25°; central differences in artificial dissipation (solid) and upwind 
differences (dashed). 
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1 I n t r o d u c t i o n  
The simulation of three-dimensional vortex flows like the ones established by delta 
wing configurations presents several challenges. First of all, there is the selection of 
an appropriate mathematical model. It is well established that if the separation line 
of the primary vortex is known a pr ior i  (on geometries with sharp leading edges, for 
example), then a useful prediction of the integral aerodynamic characteristics can be 
obtained by solving the non-linear Euler equations (Murman and Rizzi 1986). How- 
ever, when the separation lines are not known (e.g., on delta wings with round leading 
edges), or when a more detailed prediction of tile aerodynamic loads is needed, the 
mathematical model used to represent the flow must account for the effects of viscos- 
ity. This work is a numerical study of vortex flows using a hierarchy of mathematical 
models of increasing complexity and completeness, ranging from the inviscid Euler 
equations to the full three-dimensional Navier-Stokes equations. Since vortex flows 
contain strong gradients in both the normal (to the wall), and cross-flow (spanwise) 
directions, the use of a thin-layer approximation is not justifiable. Thus the full three- 
dimensional form of the viscous equations was selected. In the turbulent regime, the 
flow was modeled by the full three-dimensional mass averaged Reynolds equations, 
and a turbulence model was used for closure. 

2 N u m e r i c a l  S c h e m e  

A very efficient finite-volume multigrid time-stepping algorithm was used to integrate 
the Euler equations. Since some of the geometries studied have sharp leading edges, 
which inevitably cause sharp corners between grid lines, a cell vertex formulation 
was chosen. The formulation of the equations and the basic discretization scheme is 
given elsewhere (Jameson (1986), Volpe, Siclari, and Jameson (1987)). The scheme 
has been extensively validated for the simulation of vortical flows (Malfa, Guarino 
and Visentini (1991)) and allows for convenient extension of the algorithm to treat 
viscous flows. 

2.1 Discre t iza t ion  of  the  Viscous Fluxes 
The three-dimensional viscous flow solver employed in this study follows guidelines 
originally proposed by the first two authors(Martinelli (1987), Martinelli and Jameson 
(1988)) for the simulation of two-dimensional viscous flows. A finite-volume discretiza- 
tion of the viscous fluxes using a compact support which avoids odd-even decoupling 
modes was devised as follows. Thc components of the stress tensor and of the heat- 
flux are computed at the centers of the computational cells with the aid of Gauss's 
formula. Then, the viscous fluxes are computed by making use of an auxiliary cell 
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bounded by faces lying on the planes containing the centers of the cells surrounding 
a given vertex and the mid-lines of the cell faces. This scheme has been shown to to 
maintain good local accuracy on grids with kinks (Liu and Jameson (1992)). 

2.2 Art if icial  Diss ipat ion  
Since the discretization of the convective operator reduces to central differences on 
a regular Cartesian grid, it is necessary to introduce a dissipative operator to avoid 
aliasing at odd and even points, and to allow for a clean capture of shock waves. This is 
accomplished by the introduction of blended second and fourth differences. However, 
in order to maintain accuracy on highly stretched grids, an appropriate rescaling of 
the artificial dissipation terms (Martinelli (1987)) was implemented. 

2.3 Convergence  Accelera t ion  
Time integration is carried out by making use of a five-stage scheme which requires 
re-evaluation of the dissipative operators only at alternate stages (Martinelli (1987)). 
This scheme couples the dcsirable fcature of a wide stability region along both the 
imaginary and the real axis with good high frcqucncy damping. The efficiency of the 
scheme was enhanced by using an implicit residual averaging scheme with variable 
coefficients, and an effective multigrid strategy based on a W-cycle. Throughout the 
course of this study, the proposed algorithm has been found to be both accurate and 
robust. Moreover, its high efficiency has made the solution of viscous flow problems 
on meshes containing up to 1.5 million points routinely feasible, even on a mini- 
supercomputer. 

3 S i m u l a t i o n  o f  A L o w  R e y n o l d s  N u m b e r  F l o w  
A validation of the numerical scheme for a flat-plate laminar boundary layer has been 
carried out elsewhere (Liu and Jameson 1992). 

U- . . . .  i l n  

i 

_ 2 /]--I-- 

Fig. 1.a. Pressure Coefficient at --= = .6 
c r  

Fig. 1.b. Pressure Coefficient at =--- = .8 
c r  

The set of results presented here is aimed at demonstrating the accuracy achieved 
by the numerical scheme for vortex-flow applications. We conducted a numerical sim- 
ulation of the flow over a cropped delta wing with a sharp leading edge. Both the 
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geometry and the flow conditions corresponds to those tested by Hummel (Bergmann 
and Hummel (1990)). The relativcly low Reynolds number (based on the root chord) 
of the experiments (Re  = 440,000), allowed the calculation of the viscous flow to be 
succcssfully computed by using the pure Navier-Stokes formulation. By avoiding any 
uncertainty attributable to turbulence modeling, it provided us with an ideal test- 
case for establishing the accuracy of the basic numerical scheme for vortex-dominated 
flows. A 161 x 49 x 49 C-H grid was employed. For the sake of brevity the results for 
only two cross-sections of the wing are reported here. Figures 1.a and 1.b show a com- 
parison of the pressure coefficient on two. cross-sectional cuts of the wing computed 
by modeling the flow using the Navier-Stokcs equations and the Euler equations. 

, O  6 _ __ 

Fig. 2.a. Cross-flow at =-- = .6 c r  

Euler simulation (left) 
Laminar simulatio n (right) 

Fig. 2.b. Cross-flow at --= = .8 Cr 

Eulcr simulation (left) 
Laminar simulation (right) 

It can be seen that the two mathematical models are in good agreement in the 
inboard section of the wing, whereas they differ substantially in the outboard region. 
Moreover, the position of the primary vortex, for both the Euler and the Navier-Stokes 
solutions, compares reasonably well with experiments, and the results of the viscous 
simulation are also in good agreement with the measurements in the region of the 
secondary vortex. This seems to confirm the expectation that the computed evolution 
of the primary vortex is not strongly affected by the effects of viscosity. This is also 
confirmed by the visualization of the streamwise evolution of the field presented in 
Figures 2.a and 2.b. From those figures, we can also verify that the main effect of the 
viscosity is to generate a secondary vortex, which is absent in the inviscid calculation. 

4 S i m u l a t i o n  o f  H i g h  R e y n o l d s  N u m b e r  F l o w s  
Several turbulence models, including a Baldwin & Lomax (Baldwin and Lomax (1978), 
a Johnson &: King (Johnson and King (1984)), and an algebraic RNG based (Martinelli 
and Yakhot (1989)) were considered to account for turbulent transport. Although such 
models are well established for simulating turbulent wall flows, their application to 
three-dimensional vortex flows presents some new challenges. 

4.1 Implementation and Selection of  Scales 
The three turbulence modelsconsidered in tills study require the selection of an outer 
length scale. The main advantage of the Baldwin & Lomax over previous algebraic 
models is in the determination of the outer length scale, which is accomplished by 

computing the location of the maximum of the function F ( y )  = Iwly[1 - e x p ( -  Y+A+ )]" 
Here Iwl is the magnitude of the vorticity vector, y is the distance from the wall in 
the normal to the wall direction, y+ is the normal distance from the wall in wall 
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coordinate, and A + a damping constant. The convenience of determining an outer 
length scale based on the maximum of this function and the relative ease of imple- 
mentation provided the rationale for adopting the Baldwin & Lomax formulation as 
the equilibrium model in the modified Johnson & King model implemented in this 
study (Radespiel (1989)). In particular, following Radespiel, we use ~ = 1.9 * y,,~= 
as an estimate of the boundary layer thickness. For consistency, such an estimate has 
also been employed in the present study in the implementation of the RNG based 
algebraic model. For a turbulent wall flow it can be verified that such a function 
possess a unique and well defined maximum: however this is far from being the case 
for the vortical flows of interest in this work. Depending on the location, the function 
F(y) can exhibit multiple local maxima leading to the need of establishing a selection 
rule. For example, the choice of an erroneous maximum' in the region of the core 
of the primary vortex can cause the overprcdiction of the eddy-viscosity which, in 
turn, will damp out the main features of the flow. This fact has been recognized in 
the literature (Dcgani and Schiff (1986)). The modification of the Baldwin & Lomax 
model proposed by Degani and Schiff, although effective in the region of the primary 
vortex, showed a tendency to overprcdict the pressure coefficient in the region where 
the secondary separation takes place. There the flow is dominated by the effect of 
viscosity and turbulence transport, and the increased strength of the secondary vor- 
tex may be attributable to an underprediction of the eddy viscosity. In the region of 
the secondary separation the boundary layer and the vortex sheet which originates 
from the secondary vortex merge, and the criteria proposed by Degani and Schiff for 
the selection of the maximum of F(y) seems to be inadequate. For this reason an 
alternative procedure has been devised, in which we compute the location of all the 
local maxima and we select the one with a maximum in curvature. In this way, a 
larger length scale is selected in the region of the secondary vortex and the calculated 
pressure distribution reproduces the experimentally observed plateau (Elsenaar and 
Hoeijmakers (1991)). 

4.2 N u m e r i c a l  Resu l t s  

An extensive series of simulations has been carried out to assess the behaviour of the 
three turbulent models as well as their implementation. 

A 193 x 65 x 49 C-H grid was employed for all the calculations reported here over 
a 65 ° swept cropped delta wing with a sharp leading edge. The wing was set at 10 ° 
angle of attack into a frec stream flowing at M = .85. The Reynolds number based on 
the root chord was set to 9,000,000. Figure 3 shows a comparison of the pressure dis- 
tribution computed using each of thc three turbulence models with the experimental 
data of Elsenaar and Hoeijmakers. It can be seen the the rcsults compare reasonably 
well in the inboard section, while there are minor differences in the outboard region. A 
more detailed analysis of the cross-flow, which is not presented here because of space 
constraints, shows that the pressure distributions computed with the Johnson and 
King and the RNG based models agree quite well, and that the Baldwin and Lomax 
model produces a slightly more dissipative solution with a less developed secondary 
vortex. 
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Fig. 3. Measured and Computed Isolines of the Pressure Coefficient. From left to right: 
Experimental Data, Baldwin & Lomax Model, Johnson & King Model, RNG Model. 
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